Public consultation on the high-level approach for the identification of alternative bidding zone configurations to be considered for the bidding zone review

Fields marked with * are mandatory.

This consultation is addressed to all interested stakeholders.

Replies to this consultation should be submitted by 3 August 2021, 23:59 hrs (CET).

Questions should be addressed to ACER-ELE-2020-001@acer.europa.eu.

Contact information

• First Name

• Last Name

• Company / Institution

TIWAG - Tiroler Wasserkraft AG

Affiliation

Other (e.g. Power Exchanges, Storage Operator, etc)

If other, please specify

Utility

Address

Eduard-Wallnöfer-Platz 2
* Email

Contact phone

Country

AT - Austria

☑️ I confirm that I have read the data protection notice in this link and accepted.

* Is your input into this consultation confidential?
 ○ Yes
 ○ No

ACER will publish all non-confidential responses.

ACER will process personal data of the respondents in accordance with Regulation (EU) 2018/1725 of the European Parliament and of the Council of 23 October 2018 on the protection of natural persons with regard to the processing of personal data by the Union institutions, bodies, offices and agencies and on the free movement of such data, taking into account that this processing is necessary for performing ACER’s consultation task. For more details on how the contributions and the personal data of the respondents will be dealt with, please see ACER’s Guidance Note on Consultations and the specific privacy statement attached to this consultation.

Related documents

- Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management (‘CACM Regulation’)
- All TSOs’ proposal for the methodology and assumptions that are to be used in the bidding zone review process and for the alternative bidding zone configurations to be considered in accordance with Article 14(5) of Regulation (EU) 2019/943 of the European Parliament and of the Council of 5th June 2019 on the internal market for electricity
- ACER Decision on the methodology and assumptions that are to be used in the bidding zone review process and for the alternative bidding zone configurations to be considered (ACER Decision 29-2020)
ACER Guidance Note on Consultations

Introduction

This consultation aims to gather views and information from stakeholders on the high-level approach for the identification of alternative bidding zone (BZ) configurations to be considered for the bidding zone review (BZR) process, pursuant to Article 14(5) of Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity (‘The Electricity Regulation’).

This consultation follows the one launched in April 2020, whose scope was to gather views and information from stakeholders on selected aspects of the proposal developed in accordance with the above-mentioned article.

The definition of alternative BZ configurations has proven a difficult aspect of the proposal. In particular, the proposal did not include any alternative BZ configuration for Central Europe. In light of the insufficient technical information available for ACER to take an informed decision on alternative BZ configurations, with its Decision 29-2020 (the ‘Decision’), issued on 24 November 2020, ACER adopted a pan-European BZR methodology and requested Transmission System Operators (TSOs) to carry out a Locational Marginal Pricing (LMP) simulation. Based on the results of this LMP simulation, ACER will be able to take a separate decision on alternative BZ configurations at a later stage.

When it comes to delineating BZs, there are at least two possible approaches. A first approach is a top-down (expert-based) one, whereby experts propose alternative BZ delineations, which could potentially yield more efficient outcomes than the current BZ configuration (the status quo). Based on available data and, whenever feasible, by performing certain market/network simulations, those alternative delineations are then confirmed or refined and finally prioritised. A second approach is a bottom-up (model-based) one, whereby LMP simulations are performed with a view to clustering nodes into BZs. Subject to certain delineation constraints, the clustering exercise yields alternative BZ configurations. By requesting TSOs to perform a LMP simulation, ACER intends to adopt a model-based approach for identifying alternative BZ configurations, as further elaborated in this document.

Taking stock of lessons learnt from previous BZRs, ACER is gathering views from stakeholders in an attempt to identify improvements to the high-level approach for the identification of alternative BZ configurations to be considered for the BZR.

In the following, the context of this public consultation is first presented. Subsequently, the general approach is described and the detailed process explained in detail. At the end, the questions for consultation are listed.

Context

Background

Pursuant to Article 14(5) of the Electricity Regulation, ENTSO-E, on behalf of all TSOs, published and submitted to regulatory authorities on 7 October 2019 a proposal for the methodology and assumptions that
are to be used as well as for the alternative BZ configurations to be considered for the BZR process. Regulatory authorities identified shortcomings in the proposal. In particular, the proposal did not include any alternative BZ configuration for Central Europe. Regulatory authorities requested that TSOs amend the proposal before 20 February 2020. ENTSO-E, on behalf of all TSOs, published and submitted to regulatory authorities on 18 February 2020 an amended proposal. By letter of 13 July 2020, the Chair of the Energy Regulators' Forum, on behalf of all regulatory authorities, informed ACER that they were unable to reach a unanimous decision on all TSOs' updated BZR proposal and that the updated BZR proposal was considered as referred to ACER as of 7 July 2020, pursuant to Article 14(5) of the Electricity Regulation.

With its Decision 29-2020 (the 'Decision'), issued on 24 November 2020, ACER decided on the BZR proposal as far as the methodology and assumptions for the BZR process are concerned and adopted a pan-European BZR methodology, referring the decision on alternative BZ configurations to a later stage.

Legal framework

Pursuant to Article 14(1) of the Electricity Regulation, "Bidding zone borders shall be based on long-term, structural congestions in the transmission network. Bidding zones shall not contain such structural congestions unless they have no impact on neighbouring bidding zones or, as a temporary exemption, their impact on neighbouring bidding zones is mitigated through the use of remedial actions and those structural congestions do not lead to reductions of cross-zonal trading capacity in accordance with the requirements of Article 16. The configuration of bidding zones in the Union shall be designed in such a way as to maximise economic efficiency and to maximise cross-zonal trading opportunities in accordance with Article 16, while maintaining security of supply".

In addition, Article 33 of Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management ('the CACM Regulation') includes a list of minimum criteria that the BZR shall consider.

While the BZR study has to consider all the criteria listed in the CACM Regulation, the following three elements are explicitly mentioned in the Electricity Regulation as objectives to be pursued when delineating BZs. Moreover, these three elements can be quantified and, as such, more efficiently compared. These elements are:

- Minimisation of structural congestions within BZs;
- Maximisation of economic efficiency;
- Maximisation of cross-zonal trading opportunities.

A fourth element mentioned in the Electricity Regulation is security of supply, which is difficult to quantify during the identification of alternative BZ configurations. This element will however be considered during the BZR study as envisaged in the CACM Regulation.
General approach

The approach to identify alternative BZ configurations depends on the available data.

As reported in paragraph 150 of the Decision, results derived from LMP simulations are adequate to inform on the decision on alternative BZ configurations and in particular on the three objectives derived from Article 14(1) of the Electricity Regulation.

With regard to the objective ‘Minimisation of structural congestions within BZs’, LMP simulations shed light on whether BZs contain structural congestions or not. In particular, LMP simulations, together with clustering and flow decomposition techniques, allow establishing a cause-effect relationship between physical congestions and the network areas that, by exchanging energy, significantly contribute to such congestions. This is in line with Article 2(4) of the Electricity Regulation that describes congestion as "a situation in which all requests from market participants to trade between network areas cannot be accommodated because they would significantly affect the physical flows on network elements which cannot accommodate these flows". How the results of the LMP simulations and clustering techniques can be combined to identify the relevant network areas contributing to congestions is further described in the following section.

With regard to the other two objectives to be pursued when delineating BZs:

- Maximisation of economic efficiency: The results derived from LMP simulations provide a good opportunity to incorporate the economic efficiency criterion in the identification of alternative BZ configurations. While economic efficiency will be more accurately modelled in the BZR study itself, it is possible to use a proxy for economic efficiency when defining alternative BZ configurations. For example, a more efficient dispatch is expected to be attained when there are no or very limited nodal price differentials within a BZ. This is because the absence of nodal price differentials suggests that intra-zonal congestions are not expected to severely constrain the results of the market.

- Maximisation of cross-zonal trading opportunities: First, the minimum 70% target introduced in Article 16(8) of the Electricity Regulation is a binding requirement to be satisfied as of 1 January 2026, which could lead to a BZ change if not met, pursuant to Article 15(5) of the Electricity Regulation. Second, such minimum target is easier to meet when the flows that do not result from capacity allocation, i.e. loop flows and internal flows, consume a relatively small share of the capacity of network elements. In this context, a flow decomposition analysis is an adequate tool to identify whether alternative BZ configurations are able to limit the amount of flows that do not result from capacity allocation and to achieve the legally required targets.

As a summary, results derived from LMP simulations, complemented with flow decomposition analyses, will be used to assess whether different alternative BZ configurations contribute to the objectives envisaged in the Electricity Regulation for the design of BZs. This includes the presence, or the lack thereof, of structural congestions within BZs and the maximisation of economic efficiency and cross-zonal trading opportunities.

In the following, the detailed process leading to the definition of alternative BZ configurations is presented.
Detailed process

The process proposed to identify alternative BZ configurations is an iterative one that comprises three steps: i) the selection of the target BZ/Member State (MS), ii) the clustering and iii) the stop criterion, as presented in Figure 1. An additional fourth step that is not part of the iterations is also required to combine the identified individual alternative BZ configurations to study their joint impact. For the sake of clarity, an individual BZ configuration refers to e.g. the split of a given BZ A into two BZs A1 and A2, while an alternative BZ configuration may consider the joint impact of such split with another individual BZ configuration, e.g. the merge of BZ B and BZ C into a single BZ. This fourth step is described at the end of this section.

Figure 1 – High-level approach for the definition of alternative BZ configurations

The process is designed in such a way that each iteration focuses on one single BZ or one single MS, based on the ranking built in the first step (‘the selection of the target BZ/MS’), as further described below. This is an important feature of the process as it imposes the MS borders as a boundary condition to the process. In practical terms, this implies that both splits and mergers of BZs as alternative configurations are possible as long as the new BZ remains within existing MS borders, with the only exception of maintaining already existing BZs comprising more than one MS (essentially Germany and Luxembourg).

This choice does not exclude the possibility for mergers beyond MS borders in future BZRbs. However, such a possibility is not considered for this BZR for the following reasons. First, in light of the Electricity Regulation, the main trigger and objective of a BZR is to address structural congestions and/or facilitate the attainment of the minimum 70% target. In view of the significant presence of congestions in Europe and the significant efforts still needed to meet the 70% target, it seems efficient to focus on configurations that help to meet this target. Second, it was found that it would be difficult to reach an agreement on which mergers to prioritise, if any, and to introduce specific arrangements that MS mergers would entail. Hence, as the number of configurations to be studied needs to remain limited, it is efficient to focus on alternative configurations for which an agreement is likely to be found.

The iterative process is conducted separately for each area where a joint LMP analysis is carried out by the TSOs. In the following, each step is presented in detail.

The first step, ‘the selection of the target BZ/MS’, aims to identify the BZ (or the MS to which the BZ belongs when several BZs belong to the same MS, as further elaborated below) that is selected in each step for the identification of alternative configurations in such BZ. Such identification is based on a ranking
built on the following two indicators:

- Amount of burdening internal flows and loop flows per BZ on relevant network elements; and
- An indicator on economic efficiency, as further detailed below.

With regard to the first indicator, the amount of burdening internal flows and loop flows per BZ is derived from a flow decomposition analysis. An internal flow or a loop flow caused by a given BZ is considered to be burdening if it is in the same direction as the sum of all internal flows and loop flows on the considered network element. Flow decomposition is performed on all cross-zonal network elements as well as internal network elements used in capacity calculation, based on best available data and computational capabilities. This analysis covers the most recent three years (i.e. 2018, 2019 and 2020) of the latest ENTSO-E’s technical report on structural congestions and other major congestions as well as the target year of the BZR, i.e. 2025. The lower the amount of burdening internal flows and loop flows on network elements originated in a given BZ, the higher the BZ scores with regard to this indicator.

With regard to the second indicator, different indicators, which can be used as a proxy for economic efficiency, are currently being considered. An example of this could be the dispersion of nodal prices. In such a case, the lower the dispersion of nodal prices in a given BZ, the higher the BZ scores with regard to this indicator.

Then, BZs are first ranked according to each of the two indicators and then a single ranking is built by combining the positions of each BZ in both rankings, while considering that the two proposed indicators are equally important for the purpose of the aggregated ranking. At each iteration, the geographic area where alternative BZ configurations are investigated is the BZ which performs the worst in the aggregated ranking. If the MS already includes multiple BZs, the identification of alternative BZ configurations for the MS as a whole may be investigated. This allows the possibility of considering mergers of BZs within MSs that currently comprise more than one BZ. When a MS with multiple BZs is selected for the first time in step 1, then the algorithm would seek to identify two BZs within the MS. If the MS is selected again in a subsequent step 1, then the algorithm would seek to identify three BZs within the MS and so on.

The second step corresponds to the application of a clustering algorithm, aiming to group nodes into BZs. Additional considerations regarding this step are as follows:

- First, this step is based on the results of the LMP simulations, which is solely conducted for the target year of the BZR, i.e. 2025.

- Second, currently two types of clustering methods, namely graph-based and constrained clustering, are being considered for the selection of the most adequate clustering algorithm. The final selection will depend on the outcome of the consultancy study on the matter.
• Third, the identification of sub-BZs within a BZ is subject to an additional boundary condition: the size, in terms of total generation and consumption of the newly identified BZs, should not be too different. This is needed to mitigate the issue related to the so-called flow-factor competition that could arise in case of very diverse BZ sizes.

The third step, the ‘stop criterion’, aims to determine whether the iterations for the identification of additional BZ configurations should continue or not. In line with the objectives envisaged in the Electricity Regulation, the iterations stop when the following two targets are simultaneously met:

• For all the considered network elements and market time units, the share of internal flows and loop flows taken together is lower than or equal to 23% of the thermal capacity of the network element. This value is obtained by assuming a 10% share for reliability margins and a contribution of this share in the ratio 20/70 to internal flows and loop flows.

• The indicator used as a proxy for economic efficiency reaches the target for all considered BZs. For example, if the dispersion of nodal prices is considered as a proxy, the target would be set to a residual value.

If, after each iteration, the stop criteria are not met, then the process restarts from step 1, to identify a new BZ to be selected for the identification of alternative configurations in such BZ. For each step, a new list of BZs is used as an input. Such list comprises: i) the BZs of the status quo, except those that were altered in previous iterations and ii) the BZs proposed in any of the previous steps. For MSs with multiple BZs, the BZs to be considered in each step are the ones identified during the latest iteration when the MS was selected in step 1.

The fourth and final step concerns the combination of the identified alternative BZs into alternative configurations to be studied. A list of maximum 10 alternative configurations per bidding zone review region is envisaged. This list includes a limited number of:

• Individual alternative BZ configurations;

• Combination of two individual alternative BZ configurations;

• Combination of three (or more) individual alternative BZ configurations selected among all possible combinations of individual alternative BZ configurations that lead to the highest incremental improvements for the considered indicators.
Article 14(1) of the Electricity Regulation establishes that “Bidding zone borders shall be based on long-term, structural congestions in the transmission network. Bidding zones shall not contain such structural congestions unless they have no impact on neighbouring bidding zones or, as a temporary exemption, their impact on neighbouring bidding zones is mitigated through the use of remedial actions and those structural congestions do not lead to reductions of cross-zonal trading capacity in accordance with the requirements of Article 16. The configuration of bidding zones in the Union shall be designed in such a way as to maximise economic efficiency and to maximise cross-zonal trading opportunities in accordance with Article 16, while maintaining security of supply”.

1.1. Do you agree that the identification of alternative bidding zone configurations should mainly seek the following three objectives: 1) Minimisation of structural congestions within bidding zones; 2) Maximization of economic efficiency and 3) Maximisation of cross-zonal trading opportunities?

 ![Radio button options](Strongly disagree, Disagree, Neither agree nor disagree, Agree, Strongly agree)

1.2 Please provide any comments on the main objectives to be considered when identifying and prioritising alternative bidding zone configurations.

 ![Character limit](4999 character(s) maximum)
Economic efficiency is within the three objectives the critical catch word. Demanded from the actual electricity regulation, or better their interpretation, it is only represented with price differentials among nodes, but not e.g. with remedial action (RA) costs or market power / market liquidity and the functioning of markets. We agree that the process is already complicated but it should be mandatory that these factors be included in the following steps.

A stable and liquid long-term market for trading forward market products, the possibility for efficient hedging purposes for customers and producers, exchange traded products and PPAs are not considered. Market parties that are about to conclude a business-to-business venture will find it difficult to capture the future risk arising from the BZR with contractual clauses. Or when planning investments and having to make the crucial step for the final investment decision, the BZR means an additional risk and an additional barrier for investments. The long investment horizons of e.g. renewable power plants are exposed to comparatively quick changes in the BZ configuration.

A possible splitting of a BZ, which could lead to less efficient markets, should be thoroughly discussed: Small bidding zones have by nature an edgy / less smooth merit order curve, higher price volatility and less predictable prices. The market concentration increases and the respective NRA may be inclined to stronger surveillance and regulation that would not have been necessary. Mergers of BZs generally favour the integration of the EU energy markets since merges are the best mean against bad market concentration and less liquidity. It is important that the BZR does not pose a danger by splitting up markets even more. BZ splits could lead to higher market concentration and would urge the respective NRA to regulate that market even more.

Topic 2: Indicators for the selection of the target bidding zone/member state

To ensure that the objectives listed in Topic 1 are met, and based on the data available to ACER, the following indicators are proposed:

- The amount of internal flows and loop flows contributing to congestions, per bidding zone and on network elements included in capacity calculation, for the maximisation of cross-zonal trading opportunities; and

- The dispersion of nodal prices, i.e. assessing the level of homogeneity of nodal prices within the same bidding zone, for the maximisation of economic efficiency.

2.1. Do you agree with the proposed indicators?

at most 1 choice(s)

- [] Strongly disagree
- [x] Disagree
- [] Neither agree nor disagree
- [] Agree
- [] Strongly agree
2.2 In light of the objectives listed in Topic 1, please indicate other possible indicators for the selection of the target bidding zone/member state.

Liquidity and further the possibility for sufficient competition on the wholesale market is crucial for markets and therefore BZRs should always assess the impact on liquidity, if a BZ split is planned. We suggest the following concept:

1. Definition of indicators for market liquidity
2. Definition of critical liquidity thresholds
3. Data collection
4. Metrics for the status quo and the proposed configuration
5. Comparison of the status quo and the proposed configuration

According to a study of Frontier Economics(*) the indicators for market liquidity are:
- bid/ask spreads (all time frames)
- average (weighted) time horizon and maximum time horizon (forward market)
- average deals per day (spot markets)
- trading volume and churn-rate (all time frames)

As an additional target, BZs should ideally be of comparable size and generally the overall amount of BZs should be kept to a minimum. We have to remember the target at the beginning of liberalisation: copperplate Europe!

Topic 3: Boundary conditions for the clustering algorithm

The high-level approach is designed in such a way that each iteration focuses on one single bidding zone or one single member state, based on the ranking built in the first step ('the selection of the target bidding zone/member state'). In practical terms, this implies that both splits and mergers of bidding zones as alternative configurations are possible as long as the new bidding zone remains within existing member state borders, with the only exception of maintaining already existing bidding zones comprising more than one member state.

3.1 Do you agree that member state borders should be considered as boundary condition for the clustering algorithm?

- [] Strongly disagree
- [x] Disagree
- [] Neither agree nor disagree
- [] Agree
- [] Strongly agree

3.2 Please indicate other possible geographical boundary conditions for the clustering algorithm, including pros and cons of such approach.
National boundary conditions like member states borders should not be implemented in the first place, since they restrict the insight into the real structure of the congestions inside the electricity market. They only prolongate the actual situation and appear like bending the knee before national politicians and do not take into account the real physics and bottlenecks.

An additional boundary condition of the clustering algorithm is introduced, according to which the size, in terms of total generation and consumption of the newly identified bidding zones, should not be too different. This is needed to mitigate the issue related to the so-called flow-factor competition that could arise in case of very diverse bidding zone sizes, as further elaborated below. The competitive position of one bidding zone with respect to the others in the access to cross-zonal capacity is determined by the zonal Power Transfer Distribution Factors (PTDFs). A so-called flow-factor competition issue arises whenever zone-to-zone PTDFs between two bidding zones are systematically larger than between any other pair of bidding zones. In those circumstances, the concerned bidding zones have fewer chances to access the available cross-zonal capacity and, under scarcity circumstances, this could in turn lead to security of supply issues.

3.3. Do you think that having bidding zones with homogenous size in terms of total generation and consumption should be an objective when identifying alternative bidding zone configurations?

\[\text{at most } 1 \text{ choice(s)}\]

- Only for newly-defined bidding zones
- Always
- Never

3.4 Please provide any comments on this boundary condition.

There are three criteria for the BZ size. The size of the different BZs should be as homogeneous as possible, at the same time the amount of the BZs should be kept to a minimum and the liquidity within a BZ has to guarantee real competition.

Certain boundary conditions were implemented, that restrict the final result of the BZR too strongly. E.g. splits or mergers can only occur within MS (member states). BZs of two MS are not to be merged in this BZR yet.

Topic 4: Combination of identified individual alternative bidding zone configurations to study their joint impact

An individual bidding zone configuration refers to e.g. the split of a given bidding zone A into two bidding zones A1 and A2, while an alternative bidding zone configuration may consider the joint impact of such split with another individual bidding zone configuration, e.g. the merge of bidding zone B and bidding zone C into a single bidding zone.

A list of maximum 10 alternative configurations per bidding zone review region is envisaged. This list includes a limited number of:

- Individual alternative bidding zone configurations;
Combination of two individual alternative bidding zone configurations;

Combination of three (or more) individual alternative bidding zone configurations.

selected among all possible combinations of individual alternative bidding zone configurations that lead to the highest incremental improvements for the considered indicators.

The need to set a limit to the maximum number of alternative configurations to be studied is derived from the time window available to transmission system operators to perform the bidding zone review. This is laid down in Article 14(6) of the Electricity Regulation, according to which "On the basis of the methodology and assumptions approved pursuant to paragraph 5, the transmission system operators participating in the bidding zone review shall submit a joint proposal to the relevant Member States or their designated competent authorities to amend or maintain the bidding zone configuration no later than 12 months after approval of the methodology and assumptions pursuant to paragraph 5".

4.1. Please provide any comments on the approach to combine the incremental effects of individual alternative bidding zone configurations to study their joint impact.

4.2. In your view, how many alternative bidding zone configurations per bidding zone review region should be analysed during the bidding zone review to ensure an adequate level of representativeness, while still allowing transmission system operators to comply with the timeline set out in Article 14(6) of the Electricity Regulation?

at most 1 choice(s)

- Less than 5
- [] Between 5 and 10
- [] More than 10

Topic 5: Other comments

5 Please provide any other comments on the high-level approach and add a sufficient explanation.

Third countries: Third countries are only included, if an agreement exists. In the case of CH, this puts a question mark behind all assumed flows within the neighbouring countries FR-DE-IT-AT.

TSO-Input: The TSOs create and deliver the data, i.e. the results of the LMP simulations. A neutral third party, like a renowned research/scientific institute should be in charge to deliver these data and check the
quality of the results.

Choice of Scenarios: Since the statistics of the weather variability decides, whether a node belongs to a certain cluster or to another, we would like to have the assumptions and data about the scenarios laid out in more detail.

Contact

ACER-ELE-2020-001@acer.europa.eu