Intraday capacity calculation methodology of the Core capacity calculation region

in accordance with Article 20ff. of the Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on capacity allocation and congestion management

For information only

TRACK CHANGE VERSION of the 2nd amendment of ID CCM

09-08-2022

<table>
<thead>
<tr>
<th>Purpose:</th>
<th>methodolody draft</th>
<th>for public consultation</th>
<th>for final publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status:</td>
<td>draft</td>
<td>☒ final</td>
<td></td>
</tr>
<tr>
<td>TSO approval:</td>
<td>☐ for approval</td>
<td>☒ approved</td>
<td></td>
</tr>
<tr>
<td>NRA approval:</td>
<td>☐ outstanding</td>
<td>☐ approved</td>
<td></td>
</tr>
</tbody>
</table>
Intraday capacity calculation methodology of the Core capacity calculation region
Annex 1: Justification of usage and methodology for calculation of external constraints
Intraday capacity calculation methodology of the Core capacity calculation region

Annex 2: Requirements for calculation of intraday cross-zonal capacities before full implementation of intraday capacity calculation ... 55

Whereas

(1) This document sets out the capacity calculation methodology in accordance with Article 20ff. of Commission Regulation (EU) 2015/1222 of 24 July 2015 establishing a guideline on Capacity Allocation and Congestion Management (hereafter referred to as the “CACM Regulation”). This methodology is hereafter referred to as the “intraday capacity calculation methodology”.

(2) The intraday capacity calculation methodology takes into account the general principles and goals set in the CACM Regulation as well as in Regulation Regulation (EC) No 714/2009EU) 2019/943 of the European Parliament and of the Council of 13 July 2009 on conditions for access to the network for cross-border exchanges in internal market for electricity (hereafter referred to as “Regulation (EC) No 714/2009EU) 2019/943”). The goal of the CACM Regulation is the coordination and harmonisation of capacity calculation and allocation in the day-ahead and intraday cross-border markets. It sets, for this purpose, the requirements to establish an intraday capacity calculation methodology to ensure efficient, transparent and non-discriminatory capacity allocation.

(3) According to Article 9(9) of the CACM Regulation, the expected impact of the intraday capacity calculation methodology on the objectives of the CACM Regulation has to be described and is presented below.

(4) The intraday capacity calculation methodology serves the objective of promoting effective competition in the generation, trading and supply of electricity (Article 3(a) of the CACM Regulation) since it ensures that the cross-zonal capacity is calculated in a way that avoids undue discrimination between market participants and since the same intraday capacity calculation methodology will apply to all market participants on all respective bidding zone borders in the Core CCR, thereby ensuring a level playing field amongst market participants. Market participants will have access to the same reliable information on cross-zonal capacities and allocation constraints for intraday allocation, at the same time and in a transparent way.

(5) The intraday capacity calculation methodology contributes to the optimal use of transmission infrastructure and to operational security (Article 3(b) and (c) of the CACM Regulation) since the flow-based approach aims at providing the maximum available capacity to market participants on the intraday timeframe within the operational security limits.

(6) The intraday capacity calculation methodology contributes to avoiding that cross-zonal capacity is limited in order to solve congestion inside control areas by (i) defining clear criteria under which the network elements located inside bidding zones can be considered as limiting for capacity calculation, and (ii) ensuring that a minimum share of the capacity is made available for commercial exchanges while ensuring operational security (Article 3(a) to (c) of the CACM Regulation and Article 16(8) of the Regulation (EU) 2019/943).

(7) The intraday capacity calculation methodology serves the objective of optimising the allocation of cross-zonal capacity (Article 3(d) of the CACM Regulation), since it is using the flow-based approach, which optimises the way in which the cross-zonal capacities are allocated to market...
Intraday capacity calculation methodology of the Core capacity calculation region

participants, and since it facilitates the efficiency of congestion management by comparing the capacity allocation with other congestion management alternatives, such as the application of remedial actions, bidding zone reconfiguration and network investments.

(8) The intraday capacity calculation methodology is designed to ensure a fair and non-discriminatory treatment of TSOs, nominated electricity market operators (‘NEMOs’), the Agency, regulatory authorities and market participants (Article 3(e) of the CACM Regulation) since the intraday capacity calculation methodology has been developed and adopted within a process that ensures the involvement of all relevant stakeholders and independence of the approving process.

(9) The intraday capacity calculation methodology determines the main principles and main processes for the intradly timeframe. It requires that the Core TSOs provide market participants with reliable information on cross-zonal capacities and allocation constraints for intraday allocation in a transparent way and at the same time. This includes information on all steps of capacity calculation and regular reporting on specific processes within capacity calculation. The intraday capacity calculation methodology therefore contributes to the objective of transparency and reliability of information (Article 3(f) of the CACM Regulation).

(10) The intraday capacity calculation methodology provides requirements for efficient use of existing electricity infrastructure and facilitates competitive and equal access to transmission infrastructure in particular in case of congestions. This provides a long-term signal for efficient investments in transmission, generation and consumption, and thereby contributes to the efficient long-term operation and development of the electricity transmission system and electricity sector in the Union (Article 3(g) of the CACM Regulation).

(11) The intraday capacity calculation methodology also contributes to the objective of respecting the need for a fair and orderly market and price formation (Article 3(h) of the CACM Regulation) by making available in due time the information about cross-zonal capacities to be released in the market, by maximising the available cross-zonal capacities and by ensuring a backup solution for the cases where capacity calculation fails to provide flow-based parameters.

(12) The intraday capacity calculation methodology facilitates a level playing field for NEMOs (Article 3(i) of the CACM Regulation) since all NEMOs and all their market participants will face the same rules and non-discriminatory treatment (including timings, data exchanges, results formats etc.) within the Core CCR.

(13) Finally, the intraday capacity calculation methodology contributes to the objective of providing non-discriminatory access to cross-zonal capacity (Article 3(j) of the CACM Regulation) by ensuring a transparent and non-discriminatory approach towards facilitating cross-zonal capacity allocation.

(14) In conclusion, the intraday capacity calculation methodology contributes to the general objectives of the CACM Regulation to the benefit of all market participants and electricity end consumers.

(15) The intraday capacity calculation methodology is structured into three stages: (i) the definition and provision of capacity calculation inputs by the Core TSOs, including the underlying principles and calculation methods for these inputs, (ii), the capacity calculation process by the coordinated capacity calculator in coordination with the Core TSOs, and (iii) the capacity validation by the Core TSOs in coordination with the coordinated capacity calculator. The roles and responsibilities of the Core TSOs and of the coordinated capacity calculator need to be clearly defined.

(16) The intraday capacity calculation methodology is based on forecast models of the transmission system. The inputs are created one day before the electricity delivery date with the available knowledge at that time. Therefore, the outcomes are subject to inaccuracies and uncertainties. The aim of the reliability margin is to cover a level of risk induced by these forecast errors.
Intraday capacity calculation methodology of the Core capacity calculation region

(17) The methodology applies temporary solutions for reliability margins, generation shift keys and allocation constraints. As regards reliability margins, the first real calculation can only be done after some operational experience is gained with the application of this methodology. For generation shift keys, TSOs also need some operational experience in order to be able to improve them. The final definition of these capacity calculation inputs should therefore be reviewed and redefined if needed after the effective implementation of this methodology.

(18) Some operational security limits can be transformed into limitations on active power flows on critical network elements, whereas some other cannot and may be modelled as allocation constraints. Some of the operational security limits (inter alia frequency, voltage and dynamic stability) depend on the level of production and consumption in a given bidding zone, and these cannot be controlled by active power flow on critical network elements. Thus, specific limitations on production and consumption are needed, and these are expressed as maximum import and export constraints of bidding zones. External constraints are therefore a type of allocation constraints limiting the total import and export of a bidding zone. Nevertheless, given the lack of proper legal and technical justification for these allocation constraints, their application is considered in this methodology as a temporary solution in order to allow TSOs to explore alternative solutions to the underlying problems. If none of the alternative solutions is more efficient to tackle the underlying problems, the concerned TSOs may propose to continue applying them.

(19) To avoid undue discrimination between internal and cross-zonal exchanges (and the underlying discrimination between market participants trading inside or between bidding zones), the day-ahead capacity calculation methodology introduces two important measures. The first measure aims to limit the situations where cross-zonal exchanges are limited by congestions inside bidding zones. The second measure aims to minimise the degree to which the flows resulting from exchanges inside a bidding zone on network elements located inside that zone (i.e. internal flows) or on network elements on the borders of bidding zones and inside neighbouring bidding zones (i.e. loop flows) are reducing the available cross-zonal capacity. This methodology also introduces the first measure, which is to limit the cases where congestions inside bidding zones impact cross-zonal capacity only to those situations that are proven to be the most efficient. However, the second principle from the day-ahead capacity calculation methodology (i.e. introduction of minimum cross-zonal capacities) cannot be applied in the intraday capacity calculation methodology, since this principle requires extensive application of remedial actions, yet the time between the intraday capacity calculation and the first delivery hour is too short to identify, coordinate and apply the remedial actions that would be necessary to guarantee the minimum cross-zonal capacity.

(20) In the zonal congestion management model established by the CACM Regulation, bidding zones should be established such that physical congestions occur only on network elements located on the borders of such bidding zones. The network elements located within bidding zones should therefore a priori not limit cross-zonal capacity and should therefore not be considered in capacity calculation. Nevertheless, at the time of adoption of this methodology, some network elements located inside the Core bidding zones are often congested and therefore TSOs need some transition period to shift gradually from limiting cross-zonal capacity, as the main method to address these internal congestions, to other methods in which internal congestions limit cross-zonal capacity only when this is the most efficient solution considering other alternatives (such as remedial actions, reconfiguration of bidding zones or network investments). Only in case those alternatives are proven inefficient, TSOs should be able to continue addressing internal congestions by limiting cross-zonal capacity beyond the transition period.

(21) Despite coordinated application of capacity calculation, TSOs remain responsible for maintaining operational security. For this reason they need to validate the calculated cross-zonal capacities to ensure that they do not violate operational security limits. Each TSO may individually validate cross-zonal capacities. This may lead to reductions of cross-zonal capacities below the values needed to avoid undue discrimination. Thus transparency, monitoring and reporting, as well as the exploration of alternative solutions are needed in case of reductions of cross-zonal capacities.
(22) Transparency and monitoring of capacity calculation are essential for ensuring its efficiency and understanding. This methodology establishes significant requirements on TSOs to publish the information required by stakeholders to analyse the impact of capacity calculation on the market functioning. Furthermore, additional information is required to allow regulatory authorities to perform their monitoring duties. Finally, the methodology establishes significant reporting requirements in order for stakeholders, regulatory authorities and other interested parties to verify whether the transmission infrastructure is operated efficiently and in the interest of consumers.

(23) The Core ID CCM (Annex II of Decision No. 02/2019 of ACER) is the subject of actions for annulment before the General Court (cases T-283/19 and T-631/19). The present amendment brings about targeted improvements in areas that are not the subject of those actions. It therefore does not affect the disputed parts of Decision No. 02/2019 of ACER and is without prejudice to their assessment by the Union Courts.
Intraday capacity calculation methodology of the Core capacity calculation region

TITLE 1 - General provisions

Article 1. Subject matter and scope

1. The intraday capacity calculation methodology shall be considered as a Core TSOs’ methodology in accordance with Article 20ff. of the CACM Regulation and shall cover the intraday capacity calculation methodology for the Core CCR bidding zone borders.

Article 2. Definitions and interpretation

1. For the purposes of the intraday capacity calculation methodology, terms used in this document shall have the meaning of the definitions included in Regulation (EU) 2019/943, Directive (EU) 2019/944, Commission Regulation (EU) 2015/1222\(^1\), Commission Regulation (EU) 2016/1719\(^2\), Commission Regulation (EU) 2017/2195\(^3\), Commission Regulation (EU) 543/2013\(^4\), and the definitions set out in Article 2 Annex I of the Decision No 02/2019 of the Agency for the Cooperation of the Energy Regulators of 21 February 2019 on the Core CCR TSOs’ proposal for the regional design of the day-ahead and intraday common capacity calculation methodologies\(^5\) and the definitions set out in Article 2 Annex I of the Decision No 33/2020 of the Agency for the Cooperation of the Energy Regulators of 4 December 2020 on the Methodology for Regional Operational Security Coordination for the Core Capacity Calculation Region. In addition, the following definitions, abbreviations and notations shall apply:

1. ‘AAC\(_{\text{ID}}\)’ is the already allocated capacity which has been allocated in SIDC;

2. ‘AHC’ means the advanced hybrid coupling which is a solution to take fully into account the influences of the adjacent CCRs during the capacity allocation;

3. ‘AMR\(_{\text{DA}}\)’ means the adjustment for the minimum remaining available margin in accordance with the day-ahead capacity calculation methodology of the Core CCR;

4. ‘annual report’ means the report issued on an annual basis by the CCC and the Core TSOs on the intraday capacity calculation;

5. ‘ATC’ means the available transmission capacity, which is the transmission capacity that remains available after the allocation procedure and which respects the physical conditions of the transmission system;

6. ‘CCC’ means the coordinated capacity calculator, as defined in Article 2(11) of the CACM Regulation, of the Core CCR, unless stated otherwise;

\(^1\) as amended on 15 March 2021 by Commission Implementing Regulation (EU) 2021/280 of 22 February 2021

\(^2\) as amended on 15 March 2021 by Commission Implementing Regulation (EU) 2021/280 of 22 February 2021

\(^3\) as amended on 15 March 2021 by Commission Implementing Regulation (EU) 2021/280 of 22 February 2021

\(^4\) as amended on 01 January 2020 by Regulation (EU) 2019/943

\(^5\) as amended on 10 May 2021 by the decision of the Core Regulatory Authorities on the first amendment of the day-ahead capacity calculation methodology of the core capacity calculation region
7. ‘CCR’ means the capacity calculation region as defined in Article 2(3) of the CACM Regulation;

8. ‘CGM’ means the common grid model as defined in Article 2(2) of the CACM Regulation and means the intraday CGM established in accordance with the CGMM;

9. ‘CGMM’ means the common grid model methodology, pursuant to Article 17 of the CACM Regulation;

10. ‘CNE’ means a critical network element;

11. ‘CNEC’ means a CNE associated with a contingency used in capacity calculation. For the purpose of this methodology, the term CNEC also cover the case where a CNE is used in capacity calculation without a specified contingency;

12. ‘Core CCR’ means the Core capacity calculation region as established by the Determination of capacity calculation regions pursuant to Article 15 of the CACM Regulation;

13. ‘Core net position’ means a net position of a bidding zone in Core CCR resulting from the allocation of cross-zonal capacities within the Core CCR;

15. ‘cross-zonal CNEC’ means a CNEC of which a CNE is located on the bidding zone border or connected in series to such network element transferring the same power (without considering the network losses);

16. ‘curative remedial action’ means a remedial action which is only applied after a given contingency occurs;

17. ‘D-1’ means the day before electricity delivery;

18. ‘D-2’ means the day two-days before electricity delivery;

19. ‘DACF’ means day ahead congestion forecast;

20. ‘default flow-based parameters’ means the pre-coupling backup values calculated in situations when the intraday capacity calculation fails to provide the flow-based parameters in three or more consecutive hours. These flow-based parameters are based on previously calculated flow-based parameters;

21. ‘external constraint’ means a type of allocation constraint that limits the maximum import and/or export of a given bidding zone;
22. ‘$F_{0,\text{all}}$’ means the flow per CNEC in a situation without any commercial exchange between bidding zones within Continental Europe and between bidding zones within Continental Europe and bidding zones of other synchronous areas;

23. ‘F_i’ means the expected flow in commercial situation i;

24. ‘flow-based domain’ means a set of constraints that limit the cross-zonal capacity calculated with a flow-based approach;

25. ‘FRM’ or ‘FRM’ means the flow reliability margin, which is the reliability margin as defined in Article 2(14) of the CACM Regulation applied to a CNE;

26. ‘F_{max}’ means the maximum admissible power flow;

27. ‘empty’

28. ‘F_{ref}’ means the reference flow;

29. ‘$F_{\text{ref,init}}$’ means the reference flow calculated during the initial flow-based calculation pursuant to Article 15;

30. ‘GSK’ or ‘GSK’ means the generation shift key as defined in Article 2(12) of the CACM Regulation;

31. ‘HVDC’ means a high voltage direct current network element;

32. ‘ID CC MTU’ is the intraday capacity calculation market time unit, which means the time unit for the intraday capacity calculation and is equal to 60 minutes;

33. ‘IGM’ means the intraday individual grid model as defined in Article 2(1) of the CACM Regulation;

34. ‘internal CNEC’ means a CNEC, which is not cross-zonal;

35. ‘I_{max}’ means the maximum admissible current;

36.

37. $LTA_{\text{margin,DA}}$ means the adjustment of remaining available margin to incorporate long-term allocated capacities in accordance with the day-ahead capacity calculation methodology of the Core CCR;

38.

39.

40. ‘NP’ or ‘NP’ means a net position of a bidding zone, which is the net value of generation and consumption in a bidding zone;

39a. ‘$\text{NP}_{\text{AAC,DA}}$’ means net position resulting from already allocated capacities in SDAC
Intraday capacity calculation methodology of the Core capacity calculation region

39b. NP_{AC,ID}’ means net position resulting from already allocated capacities in SIDC

41. empty

42. ‘oriented bidding zone border’ means a given direction of a bidding zone border (e.g. from Germany to France);

43. ‘pre-solved domain’ means the final set of binding constraints for capacity allocation after the pre-solving process;

44. ‘pre-solving process’ means the identification and removal of redundant constraints from the flow-based domain;

45. ‘preventive remedial action’ means a remedial action which is applied on the network before any contingency occurs;

46. ‘PST’ means a phase-shifting transformer;

47. ‘PTDF’ or ‘PTDF’ means a power transfer distribution factor;

48. ‘PTDF_{inita}’ means a matrix of power transfer distribution factors resulting from the initial flow-based calculation;

49. empty

48b. ‘PTDF_{f}’ means a matrix of power transfer distribution factors describing the final ID flow-based domain;

50. ‘PTDF_{f,DA}’ means a matrix of power transfer distribution factors describing the final DA flow-based domain;

51. ‘quarterly report’ means a report on the intraday capacity calculation issued by the CCC and the Core TSOs on a quarterly basis;

52. ‘RA’ means a remedial action as defined in Article 2(13) of the CACM Regulation;

53. ‘RAM’ or ‘RAM’ means a remaining available margin;

54. ‘reference net position or exchange’ means a position of a bidding zone or an exchange over HVDC interconnector assumed within the CGM;

55. ‘SIDC’ means the single intraday coupling;

55a. ‘SDAC’ means the single day-ahead coupling

56. shadow price’ means the dual price of a CNEC or allocation constraint representing the increase in the economic surplus if a constraint is increased by one MW;

57. ‘slack node’ means the single reference node used for determination of the PTDF matrix, i.e. shifting the power infeed of generators up results in absorption of the power shift in the slack node. A slack node remains constant for each ID CC MTU;

58. ‘SO Regulation’ means Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline on electricity transmission system operation;
Intraday capacity calculation methodology of the Core capacity calculation region

60.59. ‘standard hybrid coupling’ means a solution to capture the influence of exchanges with non-Core bidding zones on CNECs that is not explicitly taken into account during the capacity allocation phase;

61.60. ‘static grid model’ means a list of relevant grid elements of the transmission system, including their electrical parameters;

62.61. ‘U’ is the reference voltage;

63.62. ‘UAF’ is an unscheduled allocated flow;

64.63. ‘vertical load’ means the total amount of electricity which exits the transmission system of a given bidding zone to connected distribution systems, end consumers connected to the transmission system, and to electricity producers for consumption in the generation of electricity;

65.64. ‘zone-to-slack PTDF’ means the PTDF of a commercial exchange between a bidding zone and the slack node;

66.65. ‘zone-to-zone PTDF’ means the PTDF of a commercial exchange between two bidding zones;

67.66. the notation x denotes a scalar;

68.67. the notation \vec{x} denotes a vector;

69.68. the notation \mathbf{x} denotes a matrix;

70.69. ‘LTA domain’ means a set of bilateral exchange restrictions covering the previously allocated cross-zonal capacities.

71.70. ‘Extended LTA inclusion approach’ is an LTA inclusion approach in the Core Day-Ahead (DA) Capacity Calculation Methodology. When this approach is applied in the DA capacity calculation, the DA cross-zonal capacities consist of a flow-based domain (containing flow-based parameters) without LTA inclusion and a separate LTA domain (including LTA values);

72.71. ‘SECs’ means scheduled exchange resulting from already allocated capacities in the single day ahead coupling (SDAC). The parameter is provided by the SDAC based on the all TSO methodology for calculating scheduled exchanges resulting from single day-ahead coupling according to Article 43 of CACM Regulation.

1. In this intraday capacity calculation methodology unless the context requires otherwise:
 (a) the singular indicates the plural and vice versa;
 (b) the acronyms used both in regular and italic font represent respectively the term used and the respective variable;
 (c) the table of contents and the headings are inserted for convenience only and do not affect the interpretation of this intraday capacity calculation methodology;
 (d) any reference to the intraday capacity calculation, intraday capacity calculation process or the intraday capacity calculation methodology shall mean a common intraday capacity
Intraday capacity calculation methodology of the Core capacity calculation region

calculation, common intraday capacity calculation process and common intraday capacity calculation methodology respectively, which is applied by all Core TSOs in a common and coordinated way on all bidding zone borders of the Core CCR; and

(e) any reference to legislation, regulations, directive, order, instrument, code, or any other enactment shall include any modification, extension or re-enactment of it when in force.

Article 3. Application of this methodology

This intraday capacity calculation methodology solely applies to the intraday capacity calculation within the Core CCR. Capacity calculation methodologies within other CCRs or for other time frames are not in the scope of this methodology.

TITLE 2 - General description of the capacity calculation methodology

Article 4. Intraday capacity calculation process

1. For the intraday market time frame, the cross-zonal capacities shall be calculated using the flow-based approach as defined in this methodology.

2. The intraday cross-zonal capacity calculation shall be performed in the following sequence, by the times established in the process description document as referred to in paragraph 7:

 (a) updating of cross-zonal capacities remaining after the SDAC for all ID CC MTUs between 00:00 and 24:00 of day D and providing them as intraday cross-zonal capacities to relevant NEMOs no later than 15 minutes before the intraday cross-zonal gate opening time;

 (b) calculation of intraday cross-zonal capacities for all ID CC MTUs between 00:00 and 24:00 of day D. The cross-zonal capacities resulting from this calculation shall be published and submitted to NEMOs no later than 15 minutes before the target start of allocation at 22:00 market time of day D-1; and

 (c) re-calculation of intraday cross-zonal capacities for all ID CC MTUs between 12:00 and 24:00 of day D. The cross-zonal capacities resulting from this re-calculation shall be published and submitted to NEMOs no later than 15 minutes before the target start of allocation at 10:00 market time of day D.

The reference to ID CC MTUs in the remainder of this methodology shall mean the MTUs as established in this paragraph.

3. Each calculation or re-calculation of cross-zonal capacities pursuant to paragraph 2(b) and 2(c), respectively shall consist of three main stages:

 (a) the creation of capacity calculation inputs by the Core TSOs;

 (b) the capacity calculation process by the CCC; and

 (c) the capacity validation by the Core TSOs in coordination with the CCC.

4. Each Core TSO shall provide the CCC the following capacity calculation inputs by the times established in the process description document:
Intraday capacity calculation methodology of the Core capacity calculation region

(a) individual list of CNECs in accordance with Article 5;
(b) operational security limits in accordance with Article 6;
(c) external constraints in accordance with Article 7;
(d) FRMs in accordance with Article 8;
(e) GSKs in accordance with Article 9; and
(f) non-costly and costly RAs in accordance with Article 10.

5. In addition to the capacity calculation inputs pursuant to paragraph 3, the Core TSOs, or an entity delegated by the Core TSOs, shall send to the CCC, for each ID CC MTU of the delivery day, the following additional inputs by the times established in the process description document:
 (a) the Core net positions or alternatively the already allocated capacities on the Core bidding zone borders resulting from the SDAC;
 (b) the Core net positions or alternatively the already allocated capacities on the Core bidding zone borders resulting from the SIDC not already included in the CGM.

If the Core TSOs provided to the CCC the already allocated capacities on the Core bidding zone borders instead of the Core net positions, the CCC shall convert them into Core net positions.

6. When providing the capacity calculation inputs pursuant to paragraphs 4 and 5, the Core TSOs shall respect the formats commonly agreed between the Core TSOs and the CCC while fulfilling the requirements and guidance defined in the CGMM.

7. No later than six months before the implementation of this methodology in accordance with Article 26(3)(b), the Core TSOs shall jointly establish a process description document as referred to in paragraphs 2, 4 and 5 and publish it on the online communication platform as referred to in Article 23. This document shall reflect an up to date detailed process description of all capacity calculation steps including the timeline of each step of the intraday capacity calculation.

8. The Core RSCs shall deliver the CCC the latest available CGM, proposed and coordinated XRAs from the day-ahead and intraday CROSAs, in accordance with the CSAM. During the interim period until ROSC CROSA process is implemented in accordance of Article 37 of Core ROSC methodology, only the latest available CGM shall be delivered.

9. The intraday capacity calculation process and validation in the Core CCR shall be performed by the CCC and the Core TSOs according to the following procedure:
 Step 1. The CCC shall define the initial list of CNECs pursuant to Article 15;
 Step 2. The CCC shall calculate the first flow-based parameters \(PTDF_{\text{init}} \) and \(F_{\text{ref,init}} \) for each initial CNEC pursuant to Article 15;
 Step 3. The CCC shall determine the final list of CNECs for subsequent steps of the capacity calculation pursuant to Article 16;
 Step 4. The CCC shall calculate the \(RA_{\text{init}} \) before validation (\(RA_{\text{ref}} \)) based on the results of the previous processes pursuant to Article 18;
Intraday capacity calculation methodology of the Core capacity calculation region

Step 6. The Core TSOs shall, according to Article 19, validate the $R_{A,M,fp}$ with individual validation, and decrease RAM when operational security is jeopardised, which results in the final $R_{A,M,f}$.

Step 7. The CCC shall, according to Article 19, remove the redundant CNECs and redundant external constraints from final $PTDF_f$ and $R_{A,M,f}$.

Step 8. The CCC shall publish the $PTDF_f$ and $R_{A,M,f}$ values in accordance with Article 23 and provide them to NEMOs for capacity allocation in accordance with paragraph 2.

10. All capacity updates, calculations and re-calculations pursuant to paragraph 2, including all steps pursuant to paragraph 3, shall be performed per ID CC MTU. Cross-zonal capacities shall be provided to the NEMOs for each ID CC MTU, but for capacity allocation they may be converted into a higher time resolution in accordance with the market time unit applicable on specific bidding zone border(s).

Based on the latest available information regarding the actual system state, each TSO in the Core region shall have the right to reduce available cross-zonal capacity on their own borders after submitting capacity to SIDC in accordance with paragraph 2. Such reduction shall be coordinated amongst the TSOs sharing the border.

12. Core TSOs aim at ensuring maximal coherence between operational processes run in Core CCR. In this context, the intraday capacity calculation shall take place only after the coordinated operational security analysis run within the scope of the ROSC ICS/CROSA processes on day-ahead and intraday. Considering the fact that these ROSC processes are key for planning remedial measures to ensure operational security, the intraday capacity calculation can only commence once the ROSC ICS/CROSA process is finalized and adequate up-to-date grid models are available. This implies, that in case the ROSC ICS/CROSA process cannot be finalized within the foreseen timeframe and more time is necessary to manage grid security, intraday capacity calculation and subsequent delivery of intraday capacities may be delayed. Core TSOs shall strive at ensuring that the delay in providing intraday capacity, according to the time of delivery mentioned in paragraph 2, is as small as possible.

TITLE 3 – Capacity calculation inputs

Article 5. Definition of critical network elements and contingencies

1. Each Core TSO shall define a list of CNEs, which are fully or partly located in its own control area, and which can be overhead lines, underground cables, or transformers. All cross-zonal network elements shall be defined as CNEs, whereas only those internal network elements, which are defined pursuant to paragraph 6 or 7 shall be defined as CNEs. Until 30 days after the approval of the proposal pursuant to paragraph 6, all internal network elements may be defined as CNEs.

2. Each Core TSO shall define a list of proposed contingencies used in operational security analysis in accordance with Article 33 of the SO Regulation, limited to their relevance for the set of CNEs as defined in paragraph 1 and pursuant to Article 23(2) of the CACM Regulation. The contingencies of a Core TSO shall be located within the observability area of that Core TSO. This list shall be updated at least on a yearly basis and in case of topology changes in the grid of the Core TSO, pursuant to Article 22. A contingency can be an unplanned outage of:
(a) a line, a cable, or a transformer;
(b) a busbar;
(c) a generating unit;
(d) a load; or
(e) a set of the aforementioned elements.

3. Each Core TSO shall establish a list of CNECs by associating the contingencies established pursuant to paragraph 2 with the CNEs established pursuant to paragraph 1 following the rules established in accordance with Article 75 of the SO Regulation. Until such rules are established and enter into force, the association of contingencies to CNEs shall be based on each TSO’s operational experience. An individual CNEC may also be established without a contingency.

4. Each Core TSO shall provide to the CCC a list of CNECs established pursuant to paragraph 3.

5. No later than eighteen months after the implementation of this methodology in accordance with Article 26(3)(b), all Core TSOs shall jointly develop a list of internal network elements (combined with the relevant contingencies) to be defined as CNECs and submit it by the same deadline to all Core regulatory authorities as a proposal for amendment of this methodology in accordance with Article 9(13) of the CACM Regulation. After its approval in accordance with Article 9 of the CACM Regulation, the list of internal CNECs shall form an annex to this methodology.

6. The list pursuant to the previous paragraph shall be updated every two years. For this purpose, no later than eighteen months after the approval by all Core regulatory authorities of the proposal for amendment of this methodology pursuant to previous paragraph and this paragraph, all Core TSOs shall jointly develop a new proposal for the list of internal CNECs and submit it by the same deadline to all Core regulatory authorities as a proposal for amendment of this methodology in accordance with Article 9 of the CACM Regulation, the list of internal CNECs shall replace the relevant annex to this methodology.

7. The proposed list of internal CNECs pursuant to paragraph 5 and 6 shall not include any internal network element with contingency with a maximum zone-to-zone PTDF below 5%, calculated as the time-average over the last twelve months. An exception is applied for CNECs that are added exceptionally in accordance with Article 16(2).

8. The proposal pursuant to paragraphs 5 and 6 shall include at least the following:

(a) a list of proposed internal CNECs with the associated maximum zone-to-zone PTDFs referred to in paragraph 7;
(b) an impact assessment of increasing the threshold of the maximum zone-to-zone PTDF for exclusion of internal CNECs referred to in paragraph 7 to 10% or higher; and
(c) for each proposed internal CNEC, an analysis demonstrating that including the concerned internal network element in capacity calculation is economically the most efficient solution to address the congestions on the concerned internal network element, considering, for example, the following alternatives:

i. application of remedial actions;
Intraday capacity calculation methodology of the Core capacity calculation region

ii. reconfiguration of bidding zones;

iii. investments in network infrastructure combined with one or the two above; or

iv. a combination of the above.

Before performing the analysis pursuant to point (c), the Core TSOs shall jointly coordinate and consult with all Core regulatory authorities on the methodology, assumptions and criteria for this analysis.

9. The proposals pursuant to paragraphs 5 and 6 shall also demonstrate that the concerned Core TSOs have diligently explored the alternatives referred to in paragraph 8 sufficiently in advance taking into account their required implementation time, such that they could be applied or implemented by the time that the decisions of the Core regulatory authorities on the proposal pursuant to paragraphs 5 and 6 are taken.

10. The Core TSOs shall analyse the possibility of introducing the adjustment of a minimum RAM as applied in the day-ahead capacity calculation methodology in order to address the requirements of Article 21(1)(b)(ii) of the CACM Regulation and of Article 1.7 of Annex I to Regulation (EC) No 714/2009. TSOs shall provide a report on this analysis together with the proposal referred to in paragraph 6 and, if relevant, the necessary amendments to this methodology.

11. The Core TSOs shall regularly review and update the application of the methodology for determining CNECs as defined in Article 22.

Article 6. Methodology for operational security limits

1. The Core TSOs shall use in the intraday capacity calculation the same operational security limits as those used in the operational security analysis carried out in accordance with Article 72 of the SO Regulation.

2. To take into account the thermal limits of CNEs, the Core TSOs shall use the maximum admissible current limit (I_{max}), which is the physical limit of a CNE according to the operational security limits in accordance with Article 25 of the SO Regulation. The maximum admissible current shall be defined as follows:

(a) the maximum admissible current can be defined as:

i. Seasonal limit, which means a fixed limit for all ID CC MTUs of each of the four seasons.

ii. Dynamic limit, which means a value per ID CC MTU reflecting the varying ambient conditions.

iii. Fixed limits for all ID CC MTUs, in case of specific situations where the physical limit reflects the capability of overhead lines, cables or substation equipment installed in the primary power circuit (such as circuit-breaker, or disconnector) with limits not sensitive to ambient conditions.

(b) when applicable, I_{max} shall be defined as a temporary current limit of the CNE in accordance with Article 25 of the SO Regulation. A temporary current limit means that an overload is only allowed for a certain finite duration. As a result, various CNECs associated with the same CNE may have different I_{max} values.
Intraday capacity calculation methodology of the Core capacity calculation region

(c) I_{max} shall represent only real physical properties of the CNE and shall not be reduced by any security margin.\(^6\)

(d) the CCC shall use the I_{max} of each CNEC to calculate F_{max} for each CNEC, which describes the maximum admissible active power flow on a CNEC. F_{max} shall be calculated by the given formula:

$$F_{\text{max}} = \sqrt{3} \cdot I_{\text{max}} \cdot U \cdot \cos(\varphi)$$

Equation 1

(e) where I_{max} is the maximum admissible current of a critical network element (CNE), U is a fixed reference voltage for each CNE, and $\cos(\varphi)$ is the power factor.

(f) the CCC shall, by default, set the power factor $\cos(\varphi)$ to 1 based on the assumption that the CNE is loaded only by active power and that the share reactive power is negligible (i.e. $\varphi = 0$). If the share of reactive power is not negligible, a TSO may consider this aspect during the validation phase in accordance with Article 19.

3. The Core TSOs shall aim at gradually phasing out the use of seasonal limits pursuant to paragraph 2(a)(i) and replace them with dynamic limits pursuant to paragraph 2(a)(ii), when the benefits are greater than the costs. If applicable, after the end of each calendar year, each TSO shall analyse for all its CNEs for which seasonal limits are applied and have a non-zero shadow price at least in 0.1% of ID CC MTUs in the previous calendar year, the expected increase in the economic surplus in the next 10 years resulting from the implementation of dynamic limits, and compare it with the cost of implementing dynamic limits. Each TSOs shall provide this analysis to Core regulatory authorities.

4. If the cost benefit analysis, taking into account other planned investments, is positive, the concerned TSO shall implement the dynamic limits within three years after the analysed calendar year. In case of interconnectors, the concerned TSOs shall cooperate in performing this analysis and implementation when applicable.

Article 7. Methodology for allocation constraints

(1) In case operational security limits cannot be transformed efficiently into I_{max} and F_{max} pursuant to Article 6, the Core TSOs may transform them into allocation constraints. For this purpose, the Core TSOs may only use external constraints as a specific type of allocation constraint that limits the maximum import and/or export of a given Core bidding zone within the SIDC.

(2) The Core TSOs may apply external constraints as one of the following two options:

(a) a constraint on the Core net position (the sum of cross-zonal exchanges within the Core CCR for a certain bidding zone in the SIDC), thus limiting the net position of the respective bidding zone with regards to its imports and/or exports to other bidding zones in the Core CCR. This option shall be applied until option (b) can be applied.

(b) a constraint on the global net position (the sum of all cross-zonal exchanges for a certain bidding zone in the SIDC), thus limiting the net position of the respective bidding zone

\(^6\) Uncertainties in capacity calculation are covered on each CNEC by the flow reliability margin (FRM) in accordance with Article 8 and adjustment values related to validation in accordance with Article 19.
Intraday capacity calculation methodology of the Core capacity calculation region

with regards to all CCRs, which are part of the SIDC. This option shall be applied when: (i) such a constraint is approved within all intraday capacity calculation methodologies of the respective CCRs, (ii) the respective solution is implemented within the SIDC algorithm and (iii) the respective bidding zone borders are participating in SIDC.

(3) **External constraint options** may be used by ELIA, TenneT B.V. and PSE during a transition period of two years following the implementation of this methodology in accordance with Article 26(3)(b) and in accordance with the reasons and the methodology for the calculation of external constraints as specified in Annex 1 to this methodology. During this transition period, the concerned Core TSOs shall:

(a) calculate the value of external constraints on a daily basis for each ID CC MTU (for PSE only) or at least on a quarterly basis and publish the results of the underlying analysis (this obligation is for ELIA and TenneT B.V. only);

(b) if applicable and in case the external constraint had a non-zero shadow price in more than 0.1% of hours in a quarter, provide to the CCC a report analysing: (i) for each DA CC MTU when the external constraint had a non-zero shadow price the loss in economic surplus due to external constraint and the effectiveness of the allocation constraint in preventing the violation of the underlying operational security limits and (ii) alternative solutions to address the underlying operational security limits. The CCC shall include this report as an annex in the quarterly report as defined in Article 25(5);

(c) if applicable and when more efficient, implement alternative solutions referred to in point (b).

(4) In case the concerned Core TSOs could not find and implement alternative solutions referred to in the previous paragraph, they may, by eighteen months after the implementation of this methodology in accordance with Article 26(3)(b), together with all other Core TSOs, submit to all Core regulatory authorities a proposal for amendment of this methodology in accordance with Article 9(13) of CACM Regulation. Such a proposal shall include the following:

(a) the technical and legal justification for the need to continue using the external constraints indicating the underlying operational security limits and why they cannot be transformed efficiently into I_{max} and F_{max};

(b) the methodology to calculate the value of external constraints including the frequency of recalculation.

In case such a proposal has been submitted by all Core TSOs, the transition period referred to in paragraph 3 shall be extended until the decision on the proposal is taken by all Core regulatory authorities.

(5) For the SIDC fallback procedure, pursuant to Article 21, all external constraints, shall be modelled as constraints limiting the Core net position as referred to in paragraph 2(a).

(6) A Core TSO may discontinue the use of an external constraint. The concerned Core TSO shall communicate this change to all Core regulatory authorities and to the market participants at least one month before discontinuation.

(7) The Core TSOs shall review and update allocation constraints in accordance with Article 22.

Article 8. Reliability margin methodology
Intraday capacity calculation methodology of the Core capacity calculation region

1. The FRMs shall cover the following forecast uncertainties:
 (a) cross-zonal exchanges on bidding zone borders outside the Core CCR;
 (b) generation pattern including specific wind and solar generation forecast;
 (c) generation shift key;
 (d) load forecast;
 (e) topology forecast;
 (f) unintentional flow deviation due to frequency containment process; and
 (g) flow-based capacity calculation assumptions including linearity and modelling of external (non-Core) TSOs’ areas.

2. The Core TSOs shall aim at reducing uncertainties by studying and tackling the drivers of uncertainty.

3. The FRMs shall be calculated in two main steps. In the first step, the probability distribution of deviations between the expected power flows at the time of the capacity calculation and the realised power flows in real time shall be calculated. To calculate the expected power flows (\vec{F}_{exp}), for each ID CC MTU of the observation period, the historical CGMs and GSKs used in capacity calculation shall be used. The historical CGMs shall be updated with the deliberated Core TSOs’ actions (including at least the RAs considered during the capacity calculation) that have been applied in the relevant ID CC MTU\(^7\). The power flows of such modified CGMs shall be recalculated (\vec{F}_{ref}) and then adjusted to take into account the realised commercial exchanges inside the Core CCR. The latter adjustment shall be performed by calculating $PTDFs$ according to the methodology as described in Article 12, but using the modified CGMs and the historical GSKs. The expected power flows at the time of the capacity calculation shall therefore be calculated using the final realised commercial exchanges in the Core CCR which are reflected in realised power flows. This above calculation of expected power flows (\vec{F}_{exp}) is described with Equation 2.

$$\vec{F}_{exp} = \vec{F}_{ref} + PTDF \left(\vec{NP}_{real} - \vec{NP}_{ref} \right)$$

Equation 2

with

- \vec{F}_{exp}: expected power flow per CNEC in the realised commercial situation in Core CCR
- \vec{F}_{ref}: flow per CNEC in the CGM updated to take deliberate TSO actions into account
- $PTDF$: power transfer distribution factor matrix calculated with updated CGM
- \vec{NP}_{real}: Core net position per bidding zone in the realised commercial situation

\(^7\) These actions are controlled by the Core TSOs and thus not considered as an uncertainty.
Intraday capacity calculation methodology of the Core capacity calculation region

\[\vec{N}_{\text{ref}} \]

Core net position per bidding zone in the updated CGM

4. The expected power flows on each CNEC of the Core CCR shall then be compared with the realised power flows observed on the same CNEC. When calculating the expected (respectively realised) flows for CNECs, the expected (resp. realised) flows shall be the best estimate of the expected (resp. realised) power flow which would have occurred, should the outage have taken place. Such estimate shall take curative remedial actions into account where relevant. All differences between these two flows for all ID CC MTUs of the observation period shall be used to define the probability distribution of deviations between the expected power flows at the time of the capacity calculation and the realised power flows;

5. In the second step, the 90th percentiles of the probability distributions of all CNECs shall be calculated\(^8\). This means that the Core TSOs apply a common risk level of 10% and thereby the FRM values cover 90% of the historical forecast errors within the observation period. Subject to the proposal pursuant to paragraph 6, the FRM value for each CNEC shall either be:

(a) the 90th percentile of the probability distributions calculated for such CNEC;

(b) the 90th percentile of the probability distributions calculated for the CNEs underlying such CNEC.

6. Each TSO may reduce the FRM values resulting from the second step for its own CNECs if it considers that the underlying uncertainties have been over-estimated. For CNECs used within both the Core day-ahead and intraday capacity calculations, the FRM values calculated pursuant to this methodology shall not be higher than the FRM values for the same CNECs used within the Core day-ahead capacity calculation.

7. No later than eighteen months after the implementation of this methodology in accordance with Article 26(3)(b), the Core TSOs shall jointly perform the first FRM calculation pursuant to the methodology described above and based on the data covering at least the first year of operation of this methodology. By the same deadline, all Core TSOs shall submit to all Core regulatory authorities a proposal for amendment of this methodology in accordance with Article 9(13) of the CACM Regulation as well as the supporting document as referred to in paragraph 9 below.

8. The proposal for amendment of this methodology pursuant to the previous paragraph shall specify whether the FRM value shall be calculated for each CNEC based on the underlying probability distribution, or whether all CNECs with the same underlying CNE shall have the same FRM value calculated based on the probability distribution calculated for the underlying CNE. In case the proposal suggests calculating the FRMs at CNEC level, the proposal shall describe in detail how to estimate the expected and realised flows adequately, including the RAs that would have been triggered in order to manage the contingency when relevant.

9. The supporting document for the proposal for amendment of this methodology pursuant to paragraph 7 above shall include at least the following:

(a) the FRM values for all CNECs calculated at the level of CNE and CNEC; and

(b) an assessment of the benefits and drawbacks of calculating the FRM at the level of CNE or CNEC.

\(^8\) This value is derived based on experience in existing flow-based market coupling initiatives.
Intraday capacity calculation methodology of the Core capacity calculation region

10. Until the proposal for amendment of this methodology pursuant to paragraph 7 has been approved by all Core regulatory authorities, the Core TSOs shall use the following FRM values:

 (a) for CNECs already used in existing flow-based capacity calculation initiatives, the FRM values shall be equal or lower to the FRM values used in these initiatives at the time of adoption of this methodology; and

 (b) for CNECs not already used in existing flow-based capacity calculation initiatives, the FRM values shall be equal or lower to 10% of the F_{max} calculated under normal weather conditions.

11. After the proposal for amendment of this methodology pursuant to paragraph 7 has been approved by all Core regulatory authorities, the FRM values shall be updated at least once every year based on an observation period of one year in order to reflect the seasonality effects. The FRM values shall then remain fixed until the next update.

Article 9. Generation shift key methodology

1. Each Core TSO shall define for its bidding zone and for each ID CC MTU a GSK, which translates a change in a bidding zone net position into a specific change of injection or withdrawal in the CGM. A GSK shall have fixed values, which means that the relative contribution of generation or load to the change in the bidding zone net position shall remain the same, regardless of the volume of the change.

2. For a given ID CC MTU, the GSK shall only include actual generation and/or load present in the CGM for that ID CC MTU. The Core TSOs shall take into account the available information on generation or load available in the CGM in order to select the nodes that will contribute to the GSK.

3. The GSKs shall describe the expected response of generation and/or load units to changes in the net positions. This expectation shall be based on the observed historical response of generation and/or load units to changes in net positions, clearing prices and other fundamental factors, and thereby contributing to minimising the FRM.

4. The GSKs shall be updated and reviewed on a daily basis or whenever the expectations referred to in paragraph 3 change. The Core TSOs shall review and update the application of the generation shift key methodology in accordance with Article 22.

5. The Core TSOs belonging to the same bidding zone shall jointly define a common GSK for that bidding zone and shall agree on a methodology for such coordination. For Germany and Luxembourg, each TSO shall calculate its individual GSK and the CCC shall combine them into a single GSK for the whole German-Luxembourgian bidding zone, by assigning relative weights to each TSO’s GSK. The German and Luxembourgian TSOs shall agree on these weights, based on the share of the generation in each TSO’s control area that is responsive to changes in net position, and provide them to the CCC.

6. Within eighteen months after the implementation of this methodology in accordance with Article 26(3)(b), all Core TSOs shall develop a proposal for further harmonisation of the generation shift key methodology and submit it by the same deadline to all Core regulatory authorities as a proposal for amendment.

And other elements connected to the network, such as storage equipment.
Intraday capacity calculation methodology of the Core capacity calculation region

for amendment of this methodology in accordance with Article 9(13) of the CACM Regulation. The proposal shall at least include:

(a) the criteria and metrics for defining the efficiency and performance of GSKs and allowing for quantitative comparison of different GSKs; and

(b) a harmonised generation shift key methodology combined with, where necessary, rules and criteria for TSOs to deviate from the harmonised generation shift key methodology.

Article 10

Methodology for remedial actions in intraday capacity calculation

1. In accordance with Article 25(1) of the CACM Regulation and Article 20(2) of the SO Regulation, the Core TSOs shall individually define the RAs to be taken into account in the intraday capacity calculation.

2. In case a RA made available for the intraday capacity calculation in the Core CCR is also made available in another CCR, the TSO having control on this RA shall take care, when defining it, of a consistent use in its potential application in both CCRs to ensure operational security.

3. In accordance with Article 25(2) and (3) of the CACM Regulation, these RAs will be used for the coordinated calculation of cross-zonal capacities while ensuring operational security in real-time.

4. **RAs used for intraday capacity calculation will be aligned as much as technically feasible with the RAs used for intraday capacity calculation will be aligned as much as technically feasible with the most recent ROSC CROSA. The latest version of coordinated RAs available at the time of starting step 2 according to Article 4(9) should be used. Such RAs will be only available once ROSC CROSA is implemented in accordance of Article 37 of Core ROSC methodology.**

5. In accordance with Article 25(4) of the CACM Regulation, a TSO may withhold only those RAs, which are needed to ensure operational security in real-time operation and for which no other (costly) RAs are available, or those offered to the intraday capacity calculation in other CCRs in which the concerned TSO also participates. The CCC shall monitor and report in the annual report on systematic withholdings, which were not essential to ensure operational security in real-time operation.

6. The intraday capacity calculation may only take into account those non-costly RAs which can be modelled. These non-costly RAs can be, but are not limited to:

(a) changing the tap position of a phase-shifting transformer (PST); and

(b) a topological action: opening or closing of one or more line(s), cable(s), transformer(s), bus bar coupler(s), or switching of one or more network element(s) from one bus bar to another.

7. In accordance with Article 25(6) of the CACM Regulation, **all RAs taken into account for day-ahead capacity calculation are also considered during the intraday timeframe, depending on their technical availability.**

8. The RAs can be preventive or curative, i.e. affecting all CNECs or only pre-defined contingency cases, respectively.
Intraday capacity calculation methodology of the Core capacity calculation region

10. TSOs shall review and update the RAs taken into account in the intraday capacity calculation in accordance with Article 22.

TITLE 4 – Update of intraday cross-zonal capacities

Article 11. Update of intraday cross-zonal capacities remaining after the SDAC

(1) The CCC shall use the flow-based parameters resulting from day-ahead capacity calculation and the net positions resulting from already allocated capacities in the SDAC to calculate the updated day-ahead cross-zonal capacities, in the form of flow-based parameters, to be used as intraday cross-zonal capacities at the intraday cross-zonal gate opening time.

For the updated intraday flow-based parameters, the PTDF values shall be the final PTDFs resulting from the day-ahead capacity calculation, and the RAM shall be derived as:

\[\overline{\text{RAM}}_{\text{UID}} = \overline{\text{RAM}}_{f,DA} - \text{PTDF}_{f,DA} \overline{N}_{A,AC,DA} \]

Equation 3

with

- \(\overline{\text{RAM}}_{f,DA} \): final remaining available margin resulting from the day-ahead capacity calculation
- \(\overline{\text{RAM}}_{\text{UID}} \): updated remaining available margin for intraday cross-zonal capacities
- \(\text{PTDF}_{f,DA} \): final power transfer distribution factor matrix resulting from the day-ahead capacity calculation
- \(\overline{N}_{A,AC,DA} \): net positions resulting from already allocated capacities in SDAC

(2) For each CNEC, each TSO may decrease the \(\overline{\text{RAM}}_{f,DA} \) by decreasing the \(AMR_{\text{DA}} \) and \(LTA_{\text{AC},\text{DA}} \) as calculated pursuant to the day-ahead capacity calculation methodology while ensuring compliance with Article 16 of Regulation (EU) 2019/943 in order to avoid undue discrimination between internal and cross-zonal exchanges as referred to in Article 21(1)(b)(ii) of the CACM Regulation.

(3) Irrespective of the options provided to each TSO pursuant to this paragraph, each TSO shall ensure that on each bidding zone border, the long-term capacities that are in effect taken into account in the \(LTA_{\text{AC},\text{DA}} \), are between 0.001 MW and 1500 MW.

(4) Until six months after the implementation of intraday capacity calculation pursuant to Article 4(2)(b), the Core TSOs may set to zero the cross-zonal capacities calculated pursuant to Article 4(2)(a), including those calculated pursuant to a transitional solution for updating the cross-zonal capacities remaining after the day-ahead capacity allocation pursuant to Article 26(6). Intraday cross-zonal capacities may be set to zero until the target start of allocation as defined in Article 4(2)(b) and on the condition that offering non-zero cross-zonal capacities pursuant to Article 4(2)(a) could endanger operational security.

(a) In case the final cross-zonal capacities, calculated in accordance with this Article and taking into account Article 21(1), are in the form of ATCs, such a decision may be made per bidding zone border by the competent TSOs.

(b) In case the final cross-zonal capacities, calculated in accordance with this Article and taking into account Article 21(1), are in the form of flow-based parameters, such a decision shall be coordinated among all Core TSOs. Further details on the application of transitional solution are defined in Annex 2 to this methodology.
Intraday capacity calculation methodology of the Core capacity calculation region

TITLE 5 - Description of the intraday capacity calculation process

Article 12. Calculation of power transfer distribution factors and reference flows

1. The flow-based calculation is a centralised calculation, which delivers two main classes of parameters needed for the definition of the flow-based domain: the power transfer distribution factors (PTDFs) and the remaining available margins (RAMs).

2. In accordance with Article 29(3)(a) of the CACM Regulation, the CCC shall calculate the impact of a change in the bidding zones net position on the power flow on each CNEC (determined in accordance with the rules defined in Article 5). This influence is called the zone-to-slack PTDF. This calculation is performed from the CGM and the GSK defined in accordance with Article 9.

3. The zone-to-slack PTDFs are calculated by first calculating the node-to-slack PTDFs for each node defined in the CGM. These nodal PTDFs are derived by varying the injection of a relevant node in the CGM and recording the difference in power flow on every CNEC (expressed as a percentage of the change in injection). These node-to-slack PTDFs are translated into zone-to-slack PTDFs by multiplying the share of each node in the GSK with the corresponding nodal PTDF and summing up these products. This calculation is mathematically described as follows:

\[
P_{\text{TDF,zone-to-slack}} = P_{\text{TDF, node-to-slack}}
\]

\[
\text{GSK, node-to-zone}
\]

\[
\frac{\text{Equation 4}}{\text{with}}
\]

\[
P_{\text{TDF,zone-to-slack}} \quad \text{matrix of zone-to-slack PTDFs (columns: bidding zones; rows: CNECs)}
\]

\[
P_{\text{TDF, node-to-slack}} \quad \text{matrix of node-to-slack PTDFs (columns: nodes; rows: CNECs)}
\]

\[
\text{GSK, node-to-zone} \quad \text{matrix containing the GSKs of all bidding zones (columns: bidding zones; rows: nodes; sum of each column equal to one)}
\]

4. The zone-to-slack PTDFs as calculated above can also be expressed as zone-to-zone PTDFs. A zone-to-zone PTDF\(_{A,B,I}\) represents the influence of a variation of a net position of bidding zone A on a CNEC \(I\) and assumes a commercial exchange between a bidding zone and a slack node. A zone-to-zone PTDF\(_{A,B,I}\) represents the influence of a variation of a commercial exchange from bidding zone A to bidding zone B on CNEC \(I\). The zone-to-zone PTDF\(_{A,B,I}\) can be derived from the zone-to-slack PTDFs as follows:

\[
P_{\text{TDF, A,B,I}} = P_{\text{TDF, A,I}} - P_{\text{TDF, B,I}}
\]

\[
\text{Equation 5}
\]

5. The maximum zone-to-zone PTDF of a CNEC (PTDF\(_{z2z,max,I}\)) is the maximum influence that any Core exchange has on the respective CNEC, including exchanges over HVDC interconnectors which are integrated pursuant to Article 13:

\[
P_{\text{TDF, z2z,max,I}} = \max_{A,B} \left(\frac{\max_{A,I} (P_{\text{TDF, A,I}})}{\min_{A,I}} \right)
\]

\[
- \left(\frac{\max_{A,I} (P_{\text{TDF, A,I}})}{\min_{A,I}} \right) \left(\frac{\max_{H,V,I} (|P_{\text{TDF, F,B,I}} - P_{\text{TDF, F,H,1,I}}|)}{\max_{H,V,I}} \right)
\]

\[
- \left(\frac{\max_{H,V,I} (|P_{\text{TDF, F,B,I}} - P_{\text{TDF, F,H,2,I}}|)}{\max_{I}} \right) \left(\frac{\max_{H,V,I} (|P_{\text{TDF, F,H,1,I}} - P_{\text{TDF, F,H,2,I}}|)}{\max_{I}} \right)
\]

25
Intraday capacity calculation methodology of the Core capacity calculation region

Equation 6

with

\[PTDF_{A_j} \] zone-to-slack PTDF of bidding zone A on a CNEC I

HVDC set of HVDC interconnectors integrated pursuant to Article 13

\[\max_{A \in BZ} (PTDF_{A_j}) \] maximum zone-to-slack PTDF of Core bidding zones on a CNEC I

\[\min_{A \in BZ} (PTDF_{A_j}) \] minimum zone-to-slack PTDF of Core bidding zones on a CNEC I

\[PTDF_{VH_1, i} \] zone-to-slack PTDF of Virtual hub 1 on a CNEC I, with virtual hub 1 representing the converter station at the sending end of the HVDC interconnector located in bidding zone A

\[PTDF_{VH_2, i} \] zone-to-slack PTDF of Virtual hub 2 on a CNEC I, with virtual hub 2 representing the converter station at the sending end of the HVDC interconnector located in bidding zone B

6. The reference flow \(F_{\text{ref}} \) is the active power flow on a CNEC based on the CGM. In case of a CNEC without contingency, \(F_{\text{ref}} \) is simulated by directly performing the direct current load-flow calculation on the CGM, whereas in case of a CNEC with contingency, \(F_{\text{ref}} \) is simulated by first applying the specified contingency, and then performing the direct current load-flow calculation.

7. The expected flow \(F_i \) in the commercial situation \(i \) is the active power flow of a CNEC based on the flow \(F_{\text{ref}} \) and the deviation between the commercial situation considered in the CGM (reference commercial situation) and the commercial situation \(i \):

\[
\tilde{F}_i = \tilde{F}_{\text{ref}} + \text{PTDF} \left(N\tilde{P}_i - N\tilde{P}_{\text{ref}} \right)
\]

Equation 7

with

\(\tilde{F}_i \) expected flow per CNEC in the commercial situation \(i \)

\(\tilde{F}_{\text{ref}} \) flow per CNEC in the CGM (reference flow)

PTDF power transfer distribution factor matrix

\(N\tilde{P}_i \) Core net position per bidding zone in the commercial situation \(i \)

\(N\tilde{P}_{\text{ref}} \) Core net position per bidding zone in the reference commercial situation
Article 13. Integration of HVDC interconnectors on bidding zone borders of the Core CCR

1. The Core TSOs shall apply the evolved flow-based (EFB) methodology when including HVDC interconnectors on the bidding zone borders of the Core CCR\(^{10}\). According to this methodology, a cross-zonal exchange over an HVDC interconnector on the bidding zone borders of the Core CCR is modelled and optimised explicitly as a bilateral exchange in capacity allocation, and is constrained by the physical impact that this exchange has on all CNECs considered in the final flow-based domain used in capacity allocation and constraints modelling the maximum possible exchange of the HVDC interconnector.

2. In order to calculate the impact of the cross-zonal exchange over a HVDC interconnector on the CNECs, the converter stations of the cross-zonal HVDC shall be modelled as two virtual hubs, which function equivalently as bidding zones. Then the impact of an exchange between two bidding zones A and B over such HVDC interconnector shall be expressed as an exchange from the bidding zone A to the virtual hub representing the sending end of the HVDC interconnector plus an exchange from the virtual hub representing the receiving end of the interconnector to the bidding zone B:

$$PTDF_{A\rightarrow B,I} = (PTDF_{A,I} - PTDF_{VH,1,I}) + (PTDF_{VH,2,I} - PTDF_{B,I})$$

Equation 8

with

- \(PTDF_{VH,1,I}\) zone-to-slack \(PTDF\) of Virtual hub 1 on a CNEC \(I\), with virtual hub 1 representing the converter station at the sending end of the HVDC interconnector located in bidding zone A

- \(PTDF_{VH,2,I}\) zone-to-slack \(PTDF\) of Virtual hub 2 on a CNEC \(I\), with virtual hub 2 representing the converter station at the receiving end of the HVDC interconnector located in bidding zone B

3. The PTDFs for the two virtual hubs \(PTDF_{VH,1,I}\) and \(PTDF_{VH,2,I}\) are calculated for each CNEC and they are added as two additional columns (representing two additional virtual bidding zones) to the existing \(PTDF\) matrix, one for each virtual hub.

4. The virtual hubs introduced by this methodology are only used for modelling the impact of an exchange through a HVDC interconnector and no orders shall be attached to these virtual hubs in the coupling algorithm. The two virtual hubs will have a combined net position of 0 MW, but their individual net position will reflect the exchanges over the interconnector. The flow-based net positions of these virtual hubs shall be of the same magnitude, but they will have an opposite sign.

\(^{10}\) EFB is different from AHC. AHC imposes the capacity constraints of one CCR on the cross-zonal exchanges of another CCR by considering the impact of exchanges between two capacity calculation regions. E.g., the influence of exchanges of a bidding zone which is part of a CCR applying a coordinated net transmission capacity approach is taken into account in a bidding zone which is part of a CCR applying a flow-based approach. EFB takes into account commercial exchanges over the cross-border HVDC interconnector within a single CCR applying the flow-based method of that CCR.
Article 14. Consideration of non-Core bidding zone borders

5. Where critical network elements within the Core CCR are also impacted by electricity exchanges outside the Core CCR, the Core TSOs shall take such impact into account, with a standard hybrid coupling (SHC) and where possible also with an advanced hybrid coupling (AHC).

6. In the standard hybrid coupling, the Core TSOs shall consider the electricity exchanges on bidding zone borders outside the Core CCR as fixed input to the intraday capacity calculation. These electricity exchanges, defined as best forecasts of net positions and flows for HVDC lines, are defined and agreed pursuant to Article 19 of the CGMM and are incorporated in each CGM. They impact the F_{ref} and $F_{0,\text{Core}}$ on all CNECs and thereby increase or decrease the RAM of the Core CNECs in order for those CNECs to accommodate the flows resulting from those exchanges. Uncertainties related to the electricity exchanges forecasts are implicitly integrated within the FRM of each CNEC.

7. In the AHC, the CNECs of the intraday capacity calculation methodology shall limit not only the net positions of the Core bidding zone borders, but also the electricity exchanges on the bidding zone borders of adjacent CCRs.

8. No later than eighteen months after the implementation of this methodology in accordance with Article 26(3)(b), the Core TSOs shall jointly develop a proposal for the implementation of the AHC and submit it by the same deadline to all Core regulatory authorities as a proposal for amendment of this methodology in accordance with Article 9(13) of the CACM Regulation. The proposal for the implementation of the AHC shall aim to reduce the volume of unscheduled allocated flows on the CNECs of the Core CCR resulting from electricity exchanges on the bidding zone borders of adjacent CCRs. If before the implementation of this methodology, the AHC has been implemented on some bidding zone borders in existing flow-based capacity calculation initiatives, it may continue to be applied on those bidding zone borders as part of the day-ahead capacity calculation carried out according to this methodology until the amendments pursuant to this paragraph are implemented.

9. Until the AHC is implemented, the Core TSOs shall monitor the accuracy of non-Core exchanges in the CGM. The Core TSOs shall report in the annual report to all Core regulatory authorities the accuracy of such forecasts.

Article 15. Initial flow-based calculation

1. As a first step in the intraday capacity calculation process, the CCC shall merge the individual lists of CNECs provided by all Core TSOs in accordance with Article 5(4) into a single list, which shall constitute the initial list of CNECs.

2. Subsequently, the CCC shall use the initial list of CNECs pursuant to paragraph 5, the CGM pursuant to Article 4(8) and the GSK for each bidding zone in accordance with Article 9 to calculate the initial flow-based parameters for each ID CC MTU.

3. The initial flow-based parameters shall be calculated pursuant to Article 12 and shall consist of the $\text{PTDF}_{\text{init}}$ and $\bar{P}_{\text{ref,init}}$ values for each initial CNEC, as well as for additional elements part of the pre-defined static list of network elements with contingencies mentioned in Article 16(2)(a).
Article 16. Definition of final list of CNECs for intraday capacity calculation

1. The CCC shall use the initial list of CNECs determined pursuant to Article 15 and remove those CNECs, for which the maximum zone-to-zone PTDF$_{init}$ is not higher than 5%. The remaining CNECs shall constitute the pre-final list of CNECs.

2. Some additional cross-border relevant network elements with a specific contingency (XNECs) resulting from the most recently performed or running ROSC CROSA process, and not already part of the pre-final list of CNECs mentioned in paragraph 1, may be exceptionally turned into CNECs. The inclusion of such additional elements complies to Core ROSC methodology Article 31(3a) which emphasizes the need to prevent the effect of activated cross-border relevant RAs in ROSC CROSA process on operational security to be diminished by additional cross-zonal trades. The selection of the additional elements shall be based on the list of overloaded XNECs prior to the application of costly cross-border remedial actions during CROSA process, after application of two sequential filters:

 (a) The aforementioned overloaded XNEs must be part of a pre-defined static list of network elements with contingencies,

 (b) The sensitivity of the activated costly cross-border relevant RAs in CROSA process on the filtered elements that result from the previous step (a) must be over a dedicated agreed global threshold amongst Core NRAs and Core TSOs based on experience once the ROSC CROSA process is implemented.

3. The final list of CNECs shall consist of both the pre-final list of CNECs from paragraph 1 and the selected network elements from the aforementioned process in paragraph 2.

4. Until the ROSC CROSA process is implemented in accordance of Article 37 of Core ROSC methodology, the addition of network elements as referred to in paragraph 2 is not applied. The final list of CNECs will therefore be the equal to the pre-final list of CNECs during this interim period.

Article 17. Non-costly remedial actions optimisation

with

()

Article 18. Calculation of flow-based parameters before validation

1. Based on the initial flow-based domain and on the final list of CNECs, the Core CCC shall calculate for each CNEC the RAM before validation, relying on the following sequential steps:

 (a) the calculation of F_{ref} and $PTDF_f$ as follows:

 (i) $PTDF_f = PTDF_{init}$

 (ii) $F_{ref} = F_{ref,init}$
(b) the calculation of RAM before validation as follows:

For all CNECs part of the pre-final list pursuant to Article 16(1):

$$\overline{RAM}_{bv} = \hat{F}_{max} - \overline{FRM} - \hat{F}_{ref}$$ \hspace{1cm} \text{Equation 9}

Or for all CNECs part of the additional set of network elements pursuant to Article 16(2):

$$\overline{RAM}_{bv} = \max (0, \hat{F}_{max} - \overline{FRM} - \hat{F}_{ref})$$ \hspace{1cm} \text{Equation 10a}

with

- \hat{F}_{max}: Maximum active power flow pursuant to Article 6
- \overline{FRM}: Flow reliability margin pursuant to Article 8
- \hat{F}_{ref}: Flow resulting from the net positions described in the CGM after NRAO, pursuant to paragraph 1(a) Article 17(4)(b)
- \overline{RAM}_{bv}: Remaining available margin before validation

2. In case an external constraint restricts the Core net positions pursuant to Article 7(2)(a), it shall be added as an additional row to the $PTDF_f$ matrix and the \overline{RAM}_{bv} vector as follows:

(a) the $PTDF$ value in the column related to the bidding zone applying the concerned external constraint is set to 1 for an export limit and -1 for an import limit, respectively;

(b) the $PTDF$ values in the columns related to all other bidding zones are set to zero; and

(c) the RAM value is set to the amount of the external constraint, corrected for the net position included in the CGM.

Article 78. Article 19. Validation of flow-based parameters

1. The Core TSOs shall validate and have the right to correct cross-zonal capacity for reasons of operational security during the validation process.

2. Each Core TSO shall validate and have the right to decrease the RAM for reasons of operational security during the individual validation. The adjustment due to individual validation is called ‘individual validation adjustment' (IVA) and it shall have a positive value, i.e. it may only reduce the RAM. IVA may reduce the RAM only to the minimum degree that is needed to ensure operational security considering all expected available costly and non-costly RAs, in accordance with Article 22 of the SO Regulation. The individual validation adjustment may be done in the following situations:

(a) an occurrence of an exceptional contingency or forced outage as defined in Article 3(39) and Article 3(77) of the SO Regulation;

(b) when all available costly and non-costly RAs are not sufficient to ensure operational security;
Intraday capacity calculation methodology of the Core capacity calculation region

(c) a mistake in input data, that leads to an overestimation of cross-zonal capacity from an operational security perspective; and/or

(d) a potential need to cover reactive power flows on certain CNECs.

3.

If all available costly and non-costly RAs are not sufficient to ensure operational security on an internal network element with a specific contingency, which is not defined as CNEC and for which the maximum zone-to-zone PTDF is above the PTDF threshold referred to in Article 16(1), the competent Core TSO may exceptionally add such internal network element with associated contingency to the final list of CNECs. The RAM on this exceptional CNEC shall be the highest RAM ensuring operational security considering all available costly and non-costly RAs. PTDF_{\text{in}} according to Article 15(3) shall be used to determine if the PTDF of the additional CNEC is above the PTDF threshold.

4. When performing the validation, the Core TSOs shall consider the operational security limits pursuant to Article 6(1). While considering such limits, they may consider additional grid models, and other relevant information. Therefore, the Core TSOs shall use the tools developed by the CCC for analysis, but may also employ verification tools not available to the CCC.

5. In case of a required reduction due to situations as defined in paragraph 2(a), a TSO may use a positive value for IV\text{A} for its own CNECs or adapt the external constraints, pursuant to Article 7, to reduce the cross-zonal capacity for its bidding zone.

6. In case of a required reduction due to situations as defined in paragraph 2(b), (c), and (d), a TSO may use a positive value for IV\text{A} for its own CNECs. In case of a situation as defined in paragraph 2(c), a Core TSO may, as a last resort measure, request a common decision to launch the default flow-based parameters pursuant to Article 20.

7. After individual validation adjustments, the remaining available margin before validation (\text{\textbar{RAM}}_{\text{IVA}}), shall be adjusted for the flows resulting from net positions or already allocated capacities resulting from the SIDC in accordance with Article 4(5)(b). The final \text{RAM}_{f} shall be calculated by the CCC for each CNEC and external constraint according to Equation 11.

\[
\text{\text{\textbar{RAM}}}_{f} = \text{\textbar{RAM}}_{\text{IVA}} - \text{IV\text{A}} - \text{\text{PTDF}}_{f} \times N_{A,C,J,D}^{P}
\]

Equation 11

with

- \text{\text{\textbar{RAM}}}_{f} \text{ final remaining available margin}
- \text{\textbar{RAM}}_{\text{IVA}} \text{ remaining available margin before validation}
- \text{IV\text{A}} \text{ individual validation adjustment}
- \text{\text{PTDF}}_{f} \text{ final power transfer distribution factor matrix resulting from the intraday capacity calculation.}
Intraday capacity calculation methodology of the Core capacity calculation region

\[N_{\text{CA,ID}} \]

Core net positions resulting from SIDC which are not already included in the CGM

7a. In case cross-zonal capacity has been allocated on a market-based process, in accordance with Article 41 of the Commission Regulation (EU) 2017/2195 establishing a guideline on electricity balancing, the final remaining available margin for all CNECs and external constraints shall be reduced accordingly.

8. The CCC shall remove those \(\text{RAM}_f \) and \(\text{PTDF}_f \) values which are redundant, and may therefore be removed without impacting the possible allocation of cross-zonal capacity. The pre-solved CNECs and external constraints shall thus ensure that the capacity allocation shall not exceed any limiting CNEC or external constraint.

9. Any reduction of cross-zonal capacities during the validation process shall be communicated and justified to market participants and to all Core regulatory authorities in accordance with Article 23 and Article 25, respectively.

10. Every three months, the CCC shall provide in the quarterly report all the information on the reductions of cross-zonal capacity. The quarterly report shall include at least the following information for each CNEC of the pre-solved domain affected by a reduction and for each ID CC MTU:

(a) the identification of the CNEC;
(b) all the corresponding flow components pursuant to Article 23(2)(b)(vi);
(c) the volume of reduction and, if applicable, the shadow price of the CNEC resulting from SIDC and the estimated market loss of economic surplus due to the reduction;
(d) the detailed reason(s) for reduction, including the operational security limit(s) that would have been violated without reductions, and under which circumstances they would have been violated;
(e) empty the forecast flow in the CGM used for D-1 capacity calculation, in the CGM considered for the intraday capacity calculation within which the capacity reduction occurred, in the first CGM established after the considered intraday calculation and the realised flow, before (and when relevant after) contingency;
(f) if an internal network elements with a specific contingency was exceptionally added to the final list of CNECs during validation: a justification why adding the network elements with a specific contingency to the list was the only way to ensure operational security, the name or the identifier of the internal network elements with a specific contingency, the ID DA CC MTUs for which the internal network elements with a specific contingency was added to the list and the information referred to in points (b)-(c) above;
(g) the remedial actions included in the CGM before the intraday capacity calculation;
(h) in case of reduction due to individual validation, the TSO invoking the reduction; and
(i) the proposed measures to avoid similar reductions in the future.

11. The quarterly report shall also include at least the following aggregated information:

(a) statistics on the number, causes, volume and estimated loss of economic surplus of applied reductions by different TSOs; and
12. When a given Core TSO reduces capacity for its CNECs in more than 1% of ID CC MTUs of the analysed quarter, the concerned TSO shall provide to the CCC a detailed report and action plan describing how such deviations are expected to be alleviated and solved in the future. This report and action plan shall be included as an annex to the quarterly report.

13. The final flow-based parameters shall consist of PTDF_f and $\overline{\text{RAM}}_f$ for CNECs and external constraints of the pre-solved domain.

Article 79. Article 20. Intraday capacity calculation fallback procedure

According to Article 21(3) of the CACM Regulation, when the intraday capacity calculation for specific ID CC MTUs does not lead to the final flow-based parameters due to, inter alia, a technical failure in the tools, an error in the communication infrastructure, or corrupted or missing input data, the Core TSOs and the CCC shall define the missing parameters by calculating the default flow-based parameters. The calculation of default flow-based parameters shall be based on previously calculated flow-based parameters for the same delivery market time unit. The latest (intraday or day-ahead) available flow-based domain, which may be corrected during local validation in accordance with Article 19, for the considered delivery hour is first converted to zero Core balance. The RAM on each CNEC (including allocation constraints) is then decreased by the adjustments for minRAM and LTA inclusion (if present). The redundant constraints are removed, and pre-solved constraints are adjusted for the Core net positions resulting from the SDAC and the SIDC.

Article 80. Article 21. Calculation of ATCs for SIDC fallback procedure

1. In case the SIDC is unable to accommodate flow-based parameters, the CCC shall convert the cross-zonal capacities into available transmission capacities (hereafter referred as “ATCs for SIDC fallback procedure”) for each Core oriented bidding zone border and each DA CC MTU. The Core TSOs may delegate this responsibility to a third party.

2. The flow-based parameters shall serve as the basis for the determination of the ATCs for SIDC fallback procedure. As the selection of a set of ATCs from the flow-based parameters leads to an infinite set of choices, the algorithm provided in paragraph 5 determines the ATCs for SIDC fallback procedure.

3. The following inputs are required to calculate ATCs for SIDC fallback procedure for each ID CC MTU:

 (a) final flow-based parameters (PTDF_f and $\overline{\text{RAM}}_f$) as calculated pursuant to Article 19 or final flow-based parameters ($\text{PTDF}_{f,DA}$ and $\overline{\text{RAM}}_{f,DA}$) as calculated pursuant to Article 11;

 (b) if defined, the global allocation constraints shall be assumed to constrain the Core net positions pursuant to Article 7(5), and shall be described following the methodology described in Article 18(2). Such constraints shall be adjusted for offered cross-zonal capacities on the non-Core bidding zone borders.

4. the final PTDF_f and $\text{PTDF}_{f,DA}$ of all or only a subset of CNECs can be adjusted before the ID ATC extraction by setting the positive zone-to-zone PTDFs below a certain threshold to zero. The following outputs are the outcomes of the calculation for each MTU:

 (a) ATCs for SIDC fallback procedure; and
Intraday capacity calculation methodology of the Core capacity calculation region

(b) constraints with zero margin after the calculation of ATCs for SIDC fallback procedure.

5. The calculation of the ATCs for SIDC fallback procedure is an iterative procedure, which gradually calculates ATCs for each DA CC MTU, while respecting the constraints of the final flow-based parameters pursuant to paragraph 3:

(a) The initial ATCs are set equal to zero for each Core oriented bidding zone border, i.e.:

\[\overline{\text{ATC}}_{k=0} = 0 \]

with

\[\overline{\text{ATC}}_{k=0} \] the initial ATCs before the first iteration

(b) the remaining available margin at iteration zero is either equal to the final remaining available margin: \(\overline{\text{RAM}}_f \) according to Article 19(6) or the updated remaining available margin has to be adjusted for intraday cross-zonal capacities resulting from net positions or already allocated capacities \(\overline{\text{RAM}}_{UID} \) according to Article 11(1) resulting from the SIDC in accordance with Article 4(5)(b):

\[\overline{\text{RAM}}_{ATC}(0) = \overline{\text{RAM}}_f - \text{PTDF}_{CNEC} \overline{\text{NPE}}_{CNEC} \]

or

\[\overline{\text{RAM}}_{ATC}(0) = \overline{\text{RAM}}_{UID} \]

Equation 12

with

\[\overline{\text{RAM}}_{ATC}(0) \]

remaining available margin for ATC calculation at iteration \(k=0 \)

\[\overline{\text{RAM}}_f \]

final remaining available margin of the flow-based parameters pursuant to paragraph 3 of the flow-based parameters pursuant to paragraph 3, or equal to \(\overline{\text{RAM}}_{UID} \) from Article 11(1), if applicable

\[\overline{\text{RAM}}_{UID} \text{PTDF}_{CNEC} \]

updated remaining available margin for intraday cross-zonal capacities capacities PTDF matrix of the final flow-based parameters

\[\overline{\text{NPE}}_{CNEC} \]

Core net positions resulting from SIDC which are not already included in the CGM

(c) Negative ATCs are calculated for CNECs with negative \(\overline{\text{RAM}}_{ATC}(0) \) according to the following procedure:

i. Per CNEC with negative remaining available margin for ATC calculation at iteration \(k=0(\overline{\text{RAM}}_{ATC}(0)) \) negative ATCs are calculated for all oriented bidding zone borders with positive PTDFs according to Equation :
Intraday capacity calculation methodology of the Core capacity calculation region

The intraday capacity calculation methodology of the Core capacity calculation region is based on the calculation of negative ATCs (Air Traffic Capacity) for the oriented bidding zone border A to B determined by CNEC (Contracting National Entities Collaborating) i. The methodology involves several steps, each of which is outlined as follows:

Equation 14a

\[
\text{ATC}_{A \rightarrow B, \text{CNEC}} = \frac{p_{\text{PTDF}_{A \rightarrow B, \text{CNEC}}}}{\sum_{\text{Core contracts with positive } \sum_{\text{PTDF}_{A \rightarrow B, \text{CNEC}}}} \text{RAM}_{\text{ATC, CNEC}}(0)}
\]

with

- \(\text{ATC}_{A \rightarrow B, \text{CNEC}} \): negative ATC for the oriented bidding zone border A to B determined by CNEC i
- \(A, B \): Core bidding zones
- \(\text{RAM}_{\text{ATC, CNEC}}(0) \): remaining available margin for ATC calculation at iteration \(k = 0 \) of CNEC i
- \(p_{\text{PTDF}_{A \rightarrow B, \text{CNEC}}} \): Final positive zone-to-zone PTDF of the oriented bidding zone border A to B

ii. In case for an oriented Core bidding zone border more than one negative ATC has been calculated according to Equation 14a, then for each oriented Core bidding zone border the most negative ATC is determined over all CNECs with negative remaining available margin:

\[
\overline{\text{ATC}}_{A \rightarrow B} = \min(\text{ATC}_{A \rightarrow B, \text{CNEC}})
\]

Equation 14b

iii. After extraction of negative ATCs a scaling factor (SF) is calculated for each CNEC with negative remaining available margin:

\[
\text{SF}_{\text{CNEC}} = \frac{\text{RAM}_{\text{ATC, CNEC}}(0)}{\sum_{\text{Core contracts with positive } \sum_{\text{PTDF}_{A \rightarrow B, \text{CNEC}}} \text{ATC}_{A \rightarrow B}}}
\]

Equation 14c

The final scaling factor \(SF_{\text{final}} \) is the maximum of all calculated scaling factors:

\[
SF_{\text{final}} = \max(\text{SF}_{\text{CNEC}})
\]

Equation 14d

iv. The final negative ATCs are calculated by scaling the negative ATCs with the final scaling factor:

\[
\overline{\text{ATC}}_{\text{negative, final}} = \overline{\text{ATC}}_{A \rightarrow B} SF_{\text{final}}
\]

Equation 14e

cc. Before starting the iterative method applied to calculate the positive ATCs for SIDC fallback all the remaining available margins for ATC calculation at iteration \(k = 0 \) \(RAM_{\text{ATC}}(0) \) shall be adjusted to be non-negative:

\[
\text{RAM}_{\text{ATC}}(0) = \max\left(0, \text{RAM}_{\text{ATC}}(0)\right)
\]

Equation 14f
Intraday capacity calculation methodology of the Core capacity calculation region

with

\[\text{\textit{RAM}}_{\text{ATC}}(0) \]

remaining available margin for ATC calculation at iteration \(k=0 \)

The iterative method applied to calculate the positive ATCs for SIDC fallback procedure consists of the following actions for each iteration step \(k \):

i. for each CNEC and external constraint of the flow-based parameters pursuant to paragraph 3, calculate the remaining available margin based on ATCs at iteration \(k-1 \)

\[\text{\textit{RAM}}_{\text{ATC}}(k) = \text{\textit{RAM}}_{\text{ATC}}(0) - p_{\text{PTDF}}_{\text{zone-to-zone}} \text{\textit{ATC}}_{k-1} \]

\[\text{\textit{Equation 14g}} \]

with

\[\text{\textit{RAM}}_{\text{ATC}}(k) \]

remaining available margin for ATC calculation at iteration \(k \)

\[\text{\textit{ATC}}_{k-1} \]

ATCs at iteration \(k-1 \)

\[p_{\text{PTDF}}_{\text{zone-to-zone}} \]

positive zone-to-zone power transfer distribution factor matrix

ii. for each CNEC, share \(\text{\textit{RAM}}_{\text{ATC}}(k) \) with equal shares among the Core oriented bidding zone borders with strictly positive zone-to-zone power transfer distribution factors on this CNEC;

iii. from those shares of \(\text{\textit{RAM}}_{\text{ATC}}(k) \), the maximum additional bilateral oriented exchanges are calculated by dividing the share of each Core oriented bidding zone border by the respective positive zone-to-zone PTDF. The maximum additional bilateral oriented exchanges may be negative, i.e. it may lead to decrease the exchange capacity;

iv. for each Core oriented bidding zone border, \(\text{\textit{ATC}}_{k} \) is calculated by adding to \(\text{\textit{ATC}}_{k-1} \) the minimum of all maximum additional bilateral oriented exchanges for this border obtained over all CNECs and external constraints as calculated in the previous step;

v. go back to step i;

vi. iterate until the difference between the sum of ATCs of iterations \(k \) and \(k-1 \) is smaller than 1kW;

vii. the resulting positive ATCs for SIDC fallback procedure stem from the ATC values determined in iteration \(k \), after rounding down to integer values;

viii. at the end of the calculation, there are some CNECs and external constraints with no remaining available margin left. These are, together with the CNECs and external constraints with initially negative \(\text{\textit{RAM}}_{\text{ATC}}(0) \), these are the limiting constraints for the calculation of ATCs for SIDC fallback procedure.
Intraday capacity calculation methodology of the Core capacity calculation region

(c)(d) positive zone-to-zone PTDF matrix \((p_{PTDF_{zone-to-zone}})\) for each Core oriented bidding zone border shall be calculated from the \(PTDF_f\) as follows (for HVDC interconnectors integrated pursuant to Article 13, Equation 8 shall be used):

\[
p_{PTDF_{zone-to-zone,A\rightarrow B}} = \max \left(0, PTDF_{zone-to-slack,A} - PTDF_{zone-to-slack,B} \right)
\]

\(Equation \, 13\)

with

\(p_{PTDF_{zone-to-zone,A\rightarrow B}}\) positive zone-to-zone PTDFs for Core oriented bidding zone border \(A\) to \(B\)

\(PTDF_{zone-to-slack,m}\) zone-to-slack PTDF for Core bidding zone border \(m\)

(e) The final ATCs per Core oriented bidding zone border are the minimum from positive and negative ATCs:

\[
ATC_{final} = \min(\overline{ATC}_{ho}, \overline{ATC}_{negative,final})
\]

\(Equation \, 15b\)

TITLE 6 – Updates and data provision

Article 21. Article 22. Reviews and updates

1. Based on Article 3(f) of the CACM Regulation and in accordance with Article 27(4) of the same Regulation, all TSOs shall regularly and at least once a year review and update the key input and output parameters listed in Article 27(4)(a) to (d) of the CACM Regulation.

2. If the operational security limits, critical network elements, contingencies and allocation constraints used for intraday capacity calculation inputs pursuant to Article 5 and Article 7 need to be updated based on this review, the Core TSOs shall publish the changes at least 1 week before their implementation.

3. In case the review proves the need for an update of the reliability margins, the Core TSOs shall publish the changes at least one month before their implementation.

4. The review of the common list of RAs taken into account in the intraday capacity calculation, as defined in Article 10(4), shall include at least an evaluation of the efficiency of specific PSTs and the topological RAs considered from the CROSA process RAO.

5. In case the review proves the need for updating the application of the methodologies for determining GSKs, critical network elements and contingencies referred to in Articles 22 to 24 of the CACM Regulation, changes have to be published at least three months before their implementation.

6. Any changes of parameters listed in Article 27(4) of the CACM Regulation shall be communicated to market participants, all Core regulatory authorities and the Agency.

7. The Core TSOs shall communicate the impact of any change of allocation constraints and parameters listed in Article 27(4)(d) of the CACM Regulation to market participants, all Core
Intraday capacity calculation methodology of the Core capacity calculation region

regulatory authorities and the Agency. If any change leads to an adaption of the methodology, the Core TSOs shall make a proposal for amendment of this methodology according to Article 9(13) of the CACM Regulation.

Article 82. Article 23. Publication of data

1. In accordance with Article 3(f) of the CACM Regulation aiming at ensuring and enhancing the transparency and reliability of information to all regulatory authorities and market participants, all Core TSOs and the CCC shall regularly publish the data on the intraday capacity calculation process pursuant to this methodology as set forth in paragraph 2 on a dedicated online communication platform where capacity calculation data for the whole Core CCR shall be published. To enable market participants to have a clear understanding of the published data, all Core TSOs and the CCC shall develop a handbook and publish it on this communication platform. This handbook shall include at least a description of each data item, including its unit and underlying convention.

2. The Core TSOs and the CCC shall publish at least the following data items (in addition to the data items and definitions of Commission Regulation (EU) No 543/2013 on submission and publication of data in electricity markets):

 (a) cross-zonal capacities in accordance with Article 4(2) by the deadlines set therein;

 (b) the following information for intraday cross-zonal capacity calculation and re-calculation pursuant to Article 4(2)(b) and (c) shall be published by the deadlines established therein:

 i. maximum and minimum possible net position of each bidding zone;

 ii. maximum possible bilateral exchanges between all pairs of Core bidding zones;

 iii. if applicable, ATCs for SIDC fallback procedure;

 iv. names of CNECs (with geographical names of substations where relevant and separately for CNE and contingency) and external constraints of the final flow-based parameters before pre-solving and the TSO defining them;

 v. for each CNEC of the final flow-based parameters before pre-solving, the EIC code of CNE and Contingency;

 vi. for each CNEC of the final flow-based parameters before pre-solving, the method for determining \(I_{\text{max}} \) in accordance with Article 6(2)(a);

 vii. detailed breakdown of \(RAM \) for each CNEC of the final flow-based parameters before pre-solving: \(I_{\text{max}}, U, F_{\min}, F_{\min}, F_{\max}, F_{\max}, F_{\text{ref,init}}, F_{0,\text{core}}, F_{0,\text{all}}, F_{A} \);

 viii. value of each external constraint before pre-solving;

 ix. indication of whether default flow-based parameters were applied;

 x. indication of whether a CNEC is redundant or not;

 xi. information about the validation reductions:

 • the identification of the CNEC;

 • the TSO invoking the reduction;
Intraday capacity calculation methodology of the Core capacity calculation region

- the volume of reduction (IVA);
- the detailed reason(s) for reduction in accordance with Article 19(2), including the operational security limit(s) that would have been violated without reductions, and under which circumstances they would have been violated;
- if an internal network elements with a specific contingency was exceptionally added to the final list of CNECs during validation: (i) a justification of the reasons of why adding the internal network elements with a specific contingency to the list was the only way to ensure operational security, (ii) the name or identifier of the internal network elements with a specific contingency;

(h)(c) the following forecast information contained in the CGM for each ID CC MTU shall be published by the deadlines established in Article 4(2):

i. vertical load for each Core bidding zone and each TSO;
ii. production for each Core bidding zone and each TSO;
iii. Core net position for each Core bidding zone and each TSO;
iv. reference net positions of all bidding zones in synchronous area Continental Europe and reference exchanges for all HVDC interconnectors within synchronous area Continental Europe and between synchronous area Continental Europe and other synchronous areas; and

(i)(d) in case of intraday auctions, two hours after the auction, the information pursuant to paragraph 2(b)(vii) shall be complemented by with the following information for each CNEC and external constraint of the final flow-based parameters:

i. shadow prices;
ii.

(e) every six months, the publication of an up-to-date static grid model by each Core TSO.

(f) The CCC shall include in its quarterly report as defined in Article 25(5) the flows resulting from net positions resulting from the SIDC on each CNEC and external constraint of the final flow-based parameters.

3. Individual Core TSO may withhold the information referred to in paragraph 2(b)(vii), 2(b)(v) and 2(d) if it is classified as sensitive critical infrastructure protection related information in their Member States as provided for in point (d) of Article 2 of the Council Directive 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. In such a case, the information referred to in paragraph 2(b)(vii) and 2(b)(v) shall be replaced with an anonymous identifier which shall be stable for each CNEC across all ID CC MTUs. The anonymous identifier shall also be used in the other TSO communications related to the CNEC, including the static grid model pursuant to paragraph 2(e) and when communicating about an outage or an investment in infrastructure. The information about which information has been withheld pursuant to this paragraph shall be published on the communication platform referred to in paragraph 1.

4. Any change in the identifiers used in paragraphs 2(b)(v), 2(b)(v) and 2(d) shall be publicly notified at least one month before its entry into force. The notification shall at least include:
(a) the day of entry into force of the new identifiers; and

(b) the correspondence between the old and the new identifier for each CNEC.

5. Pursuant to Article 20(9) of the CACM Regulation, the Core TSOs shall establish and make available a tool which enables market participants to evaluate the interaction between cross-zonal capacities and cross-zonal exchanges between bidding zones. The tool shall be developed in coordination with stakeholders and all Core regulatory authorities and updated or improved when needed.

6. The Core regulatory authorities may request additional information to be published by the TSOs. For this purpose, all Core regulatory authorities shall coordinate their requests among themselves and consult it with stakeholders and the Agency. Each Core TSO may decide not to publish the additional information, which was not requested by its competent regulatory authority.

7. Core TSOs shall provide Core regulatory authorities on a monthly basis the underlying capacity calculation and market coupling data related to the quarterly reports. The tool shall be developed in coordination with Core regulatory authorities and updated and improved when needed.

Article 83. Article 24. Quality of the data published

1. No later than six months before the implementation of this methodology in accordance with Article 26(3)(b), the Core TSOs shall jointly establish and publish a common procedure for monitoring and ensuring the quality and availability of the data on the dedicated online communication platform as referred to in Article 23. When doing so, they shall consult with relevant stakeholders and all Core regulatory authorities.

2. The procedure pursuant to paragraph 1 shall be applied by the CCC, and shall consist of continuous monitoring process and reporting in the annual report. The continuous monitoring process shall include the following elements:

 (a) individually for each TSO and for the Core CCR as a whole: data quality indicators, describing the precision, accuracy, representativeness, data completeness, comparability and sensitivity of the data;

 (b) the ease-of-use of manual and automated data retrieval;

 (c) automated data checks, which shall be conducted in order automatically to accept or reject individual data items before publication based on required data attributes (e.g. data type, lower/upper value bound, etc.); and

 (d) satisfaction survey performed annually with stakeholders and the Core regulatory authorities.

The quality indicators shall be monitored in daily operation and shall be made available on the platform for each dataset and data provider such that users are able to take this information into account when accessing and using the data.

3. The CCC shall provide in the annual report at least the following:

 (a) the summary of the quality of the data provided by each data provider;

 (b) the assessment of the ease-of-use of data retrieval (both manual and automated);
(c) the results of the satisfaction survey performed annually with stakeholders and all Core regulatory authorities; and

(d) suggestions for improving the quality of the provided data and/or the ease-of-use of data retrieval.

4. The Core TSOs shall commit to a minimum value for at least some of the indicators mentioned in paragraph 2, to be achieved by each TSO individually on average on a monthly basis. Should a TSO fail to fulfil at least one of the data quality requirements, this TSO shall provide to the CCC within one month following the failure to fulfil the data quality requirement, detailed reasons for the failure to fulfil data quality requirements, as well as an action plan to correct past failures and prevent future failures. No later than three months after the failure, this action plan shall be fully implemented and the issue resolved. This information shall be published on the online communication platform and in the annual report.

Article 84. Article 25. Monitoring, reporting and information to the Core regulatory authorities

1. The Core TSOs shall provide to the Core regulatory authorities data on intraday capacity calculation for the purpose of monitoring its compliance with this methodology and other relevant legislation.

2. At least, the information on non-anonymized names of CNECs for final flow-based parameters before pre-solving as referred to in Article 23(2)(b)iiiiv and (iv) shall be provided to all Core regulatory authorities on a monthly basis for each CNEC and each ID CC MTU. This information shall be in a format that allows easily to combine the CNEC names with the information published in accordance with Article 23(2).

3. The Core regulatory authorities may request additional information to be provided by the TSOs. For this purpose, all Core regulatory authorities shall coordinate their requests among themselves. Each Core TSO may decide not to provide the additional information, which was not requested by its competent regulatory authority.

4. The CCC, with the support of the Core TSOs where relevant, shall draft and publish an annual report satisfying the reporting obligations set in Articles 10, 14, 17, 24 and 26 of this methodology:

 (a) according to Article 10(5), the Core TSOs shall report to the Core CCC on systematic withholdings which were not essential to ensure operational security in real-time operation.

 (b) according to Article 14(5), the Core TSOs shall monitor the accuracy of non-Core exchanges in the CGM.

 (c) empty

 (d) according to Article 24(3), the CCC shall monitor and report on the quality of the data published on the dedicated online communication platform as referred to in Article 23, with supporting detailed analysis of a failure to achieve sufficient data quality standards by the concerned TSOs, where relevant.

 (e) according to Article 26(3), after the implementation of this methodology, the Core TSOs shall report on their continuous monitoring of the effects and performance of the application of this methodology.

5. The CCC, with the support of the Core TSOs where relevant, shall draft and publish a quarterly report satisfying the reporting obligations set in Articles 7, 19 and 26 of this methodology.
(a) according to Article 7(3)(b), the CCC shall collect all reports analysing the effectiveness of relevant allocation constraints, received from the concerned TSOs during the period covered by the report, and annex those to the quarterly report.

(b) according to Article 19(11), the CCC shall provide all information on the reductions of cross-zonal capacity, with a supporting detailed analysis from the concerned TSOs where relevant.

(c) according to Article 26(2), during the implementation of this methodology, the Core TSOs shall report on their continuous monitoring of the effects and performance of the application of this methodology.

(d) according to Article 23(2)(f), Core TSOs shall report on flows resulting from net positions resulting from the SIDC on each CNEC and external constraint of the final flow-based parameters.

6. The published annual and quarterly reports may withhold commercially sensitive information or sensitive critical infrastructure protection related information as referred to in Article 23(3). In such a case, the Core TSOs shall provide the Core regulatory authorities with a complete version where no such information is withheld.

TITLE 7 - Implementation

Article 85. Article 26. Timescale for implementation

1. The TSOs of the Core CCR shall publish this methodology without undue delay after the decision has been taken by the Agency in accordance with Article 9(12) of the CACM Regulation.

2. The TSOs of the Core CCR shall implement this methodology within the following timeframes:

 (a) update of cross-zonal capacities pursuant to Article 4(2)(a) by the deadline for the implementation of day-ahead capacity calculation methodology as established in the day-ahead capacity calculation methodology of the Core CCR;

 (b) calculation of intraday cross-zonal capacities pursuant to Article 4(2)(b) by twelve months after the implementation of day-ahead capacity calculation methodology as established in the day-ahead capacity calculation methodology of the Core CCR; and

 (c) re-calculation of intraday cross-zonal capacities pursuant to Article 4(2)(c) by twelve months after the implementation of calculation of intraday cross-zonal capacities pursuant to point (b) of this paragraph.

3. The implementation process, which shall start with the entry into force of this methodology and finish by the deadlines established in paragraph 3, shall consist of the following steps:

 (a) internal parallel run, during which the TSOs shall test the operational processes for the intraday capacity calculation inputs, the intraday capacity calculation process and the intraday capacity validation and develop the appropriate IT tools and infrastructure;

 (b) external parallel run, during which the TSOs will continue testing their internal processes and IT tools and infrastructure. In addition, the Core TSOs will involve the Core NEMOs to test the implementation of this methodology, and market participants to test the effects
of applying this methodology on the market. In accordance with Article 20(8) of CACM Regulation, this phase shall not be shorter than 6 months.

4. During the internal and external parallel runs, the Core TSOs shall continuously monitor the effects and the performance of the application of this methodology. For this purpose, they shall develop, in coordination with the Core regulatory authorities, the Agency and stakeholders, the monitoring and performance criteria and report on the outcome of this monitoring on a quarterly basis in a quarterly report. After the implementation of this methodology, the outcome of this monitoring shall be reported in the annual report.

5. After the adoption of this methodology and until the implementation of the day-ahead capacity calculation methodology, the Core TSOs shall apply a transitional solution to compute the cross-zonal capacities which remain after the day-ahead capacity allocation pursuant to Article 4(2)(a). This update shall be done based on day-ahead cross-zonal capacities used in existing day-ahead capacity calculation and allocation initiatives. The details on the application of this transitional solution are defined in Annex 2 to this methodology.

6. After the implementation of the day-ahead capacity calculation methodology and until the implementation of the intraday capacity calculation methodology pursuant to Article 4(2)(b), the Core TSOs shall apply a transitional solution for calculating intraday cross-zonal capacities. The details on the application of this transitional solution are defined in Annex 2, Annex 3, Annex 4 and Annex 5 to this methodology. During this transition period:

 (a) Annex 3 shall apply and replace Article 11;
 (b) Annex 4 shall apply and replace Article 21; and
 (c) Annex 5 shall apply.

TITLE 8 - Final provisions

Article 86. Language

The reference language for this methodology shall be English. For the avoidance of doubt, where TSOs need to translate this methodology into their national language(s), in the event of inconsistencies between the English version published by TSOs in accordance with Article 9(14) of the CACM Regulation and any version in another language, the relevant TSO shall, in accordance with national legislation, provide the relevant Core regulatory authorities with an updated translation of the methodology.
Annex 1: Justification of usage and methodology for calculation of external constraints

The following section depicts in detail the justification of usage and methodology currently used by each Core TSO to design and implement external constraints, if applicable. The legal interpretation on eligibility of using external constraints and the description of their contribution to the objectives of the CACM Regulation is included in the Explanatory Note.

1. Belgium:

ELIA may use an external constraint to limit the import of the Belgian bidding zone.

Technical and legal justification

ELIA is facing voltage constraints and voltage collapse risks in case of low generation within the Belgium grid. Therefore ELIA requires to maintain a certain amount of power to be generated within Belgium to prevent violation of voltage constraints (i.e. to prevent voltage dropping below the lower safety limit). The risks of dynamic instability are also analysed to assess the amount of machines requested within the Belgium grid to provide a minimal dynamic stability to avoid transient phenomena. These analyses and results lead to the use of a maximum import constraint.

Methodology to calculate the value of external constraints

The value of maximum import constraint for the Belgian bidding zone shall be estimated with studies performed on a regular basis. The studies shall include a voltage collapse analysis and a stability analysis performed in line with Article 38 of the SO Regulation. The studies shall be performed and published at least on an annual basis and updated every time this external constraint had a non-zero shadow price in more than 0.1% of hours in a given quarter.

2. Netherlands:

TenneT B.V. may use an external constraint to limit the import and export of the Dutch bidding zone.

Technical and legal justification

The combination of voltage constraints and limitations following from using a linearised GSK make it necessary for TenneT B.V. to apply external constraints. Voltage constraints justify the use of a maximum import constraint, because a certain amount of power needs to be generated within the Netherlands to prevent violation of voltage constraints (i.e. to prevent voltage dropping below the lower safety limit). To prevent the deviations between forecasted and realised values of generation in-feed following from the linear GSK to reach unacceptable levels, it is necessary to make use of external constraints to limit the feasible net position range for the Dutch import and export net position. This last point is explained in more detail below.

The intraday capacity calculation methodology uses a Generator Shift Key (GSK) to determine how a change in net position is mapped to the generating units in a specific bidding zone. The algorithm requires that the GSK is linear and that by applying the GSK the minimum and maximum net position (‘the feasibility range’) of a bidding zone can be reached. TenneT B.V. applies a GSK method that aims at establishing a realistic generator schedule for every hour and which is applicable to every possible net position within the flow-based domain. In order to realise this, generators can be divided in three groups based on a merit order: (i) rigid generators that always produce at maximum power output, (ii) idle generators that are out-of-service and (iii) ‘swing generators' that provide the 'swing capacity' to reach all intermediate net positions required by the algorithm for a specific grid situation. To reach the maximum net position, all 'swing generators' shall produce at maximum power. To reach the minimum net position, all 'swing generators' shall produce at minimum power. The absolute difference between
the minimum and maximum net position thus determines the amount of required 'swing capacity', i.e. the total capacity required from 'swing generators'.

If TenneT B.V. would not apply external constraints, and higher import and export net positions would be possible, several generators that in practice operate as rigid generators (e.g. CHPs, coal fired power plants etc.) would need to be modelled as 'swing generators'. In some cases, a switch of a generator from 'idle' to 'swing' or from 'rigid' to 'swing' could mean a jump of roughly 50% in the power output of such a power plant, which in turn has significant impact on the forecasted power flows on the CNECs close to that power plant. This results in a reduced accuracy of the GSK as the generation of these plants is modelled less accurately and the deviations between the forecasted and realised flows on particular CNECs increase to unacceptable levels with significant impact on the capacity domain. The consequence of this would be that higher FRMs need to be applied to partly cover these deviations, which will constantly limit the available capacity for the market. To prevent too large deviations in generation in-feed, the total feasibility range, which should be covered by the GSK, thus needs to be limited with external constraints.

The Netherlands is a small bidding zone with, in comparison to other bidding zones, a lot of interconnection capacity which implies a very large feasibility range compared to the total installed capacity. E.g. TenneT B.V. has applied external constraints of 5 GW for both the import and export position in the past, already implying a feasibility range of 10 GW on a total of roughly 15 GW generation capacity included in the GSK at that point in time. For other bidding zones with a much higher amount of installed capacity or relatively less interconnection capacity, the relative amount of 'swing capacity' in their GSK is much lower and therefore also the deviations between forecasted and realised generation are lower. Or in other words, the maximum feasibility range which can be covered by the GSK without increasing deviations between forecasted and realised generation to unacceptable levels, is larger than the total installed interconnection capacity for these bidding zones, making it not necessary to use external constraints as a measure to limit these deviations.

Methodology to calculate the value of external constraints

TenneT B.V. determines the maximum import and export constraints for the Netherlands based on studies, which combine a voltage collapse analysis, stability analysis and an analysis on the increased uncertainty introduced by the (linear) GSK during different extreme import and export situations in accordance to Article 38 of the SO Regulation. The studies shall be performed and published at least on an annual basis and updated every time this external constraint had a non-zero shadow price in more than 0.1% of hours in a given quarter.

3. Poland:

PSE may use an external constraint to limit the import and export of the Polish bidding zone.

Technical and legal justification

Implementation of external constraints as applied by PSE is related to integrated scheduling process applied in Poland (also called central dispatching model) and the way how reserve capacity is being procured by PSE. In a central dispatching model, in order to balance generation and demand and ensure secure energy delivery, the TSO dispatches generating units taking into account their operational constraints, transmission constraints and reserve capacity requirements. This is realised in an integrated scheduling process as a single optimisation problem called security constrained unit commitment (SCUC) and economic dispatch (SCED).

The integrated scheduling process starts after the day-ahead capacity calculation and SDAC and continues until real-time. This means that reserve capacity is not blocked by TSO in advance and in effect not removed from the wholesale market and SIDC. However, if balancing service providers (generating units) would already sold too much energy in the previous market timeframes because of
high exports, they may not be able to provide sufficient upward reserve capacity within the integrated scheduling process. Therefore, one way to ensure sufficient reserve capacity within integrated scheduling process is to set a limit on how much electricity can be imported or exported in the SIDC.

The objective to limit balancing service providers to sell too much energy in the intraday market in order to be able to provide sufficient reserve capacity in the integrated scheduling process cannot be efficiently met by translating this limit into capacities of critical network elements offered to the market. If this limit was to be reflected in cross-zonal capacities offered by PSE in the form of an appropriate adjustment of cross-zonal capacities, this would imply that PSE would need to guess the most likely market direction (imports and/or exports on particular interconnectors) and accordingly reduce the cross-zonal capacities in these directions. In the flow-based approach, this would need to be done on each CNEC in a form of reductions of the RAM. However, from the point of view of market participants, due to the inherent uncertainties of market results, such an approach is burdened with the risk of suboptimal splitting of allocation constraints onto individual interconnections – overestimated on one interconnection and underestimated on the other, or vice versa. Also, such reductions of the RAM would limit cross-zonal exchanges for all bidding zone borders having impact on Polish CNECs, whereas the allocation constraint has an impact only on the import or export of the Polish bidding zone, whereas the trading of other bidding zones is unaffected.

External constraints are determined for the whole Polish power system, meaning that they are applicable simultaneously for all CCRs in which PSE has at least one bidding zone border (i.e. Core, Baltic and Hansa). This solution is the most efficient application of external constraints. Considering allocation constraints separately in each CCR would require PSE to split global external constraints into CCR-related sub-values, which would be less efficient than maintaining the global value. Moreover, in the hours when Poland is unable to absorb any more power from outside due to violated minimal downward reserve capacity requirements, or when Poland is unable to export any more power due to insufficient upward reserve capacity requirements, Polish transmission infrastructure is still available for cross-border trading between other bidding zones and between different CCRs.

Methodology to calculate the value of external constraints:

When determining the external constraints, PSE takes into account the most recent information on the technical characteristics of generation units, forecasted power system load as well as minimum reserve margins required in the whole Polish power system to ensure secure operation and forward import/export contracts that need to be respected from previous capacity allocation time frames.

For each hour, the constraints are calculated according to the below equations:

\[
\text{EXPORT}_{\text{constraint}} = P_{CD} - P_{MA} + P_{HCD} - (P_L + P_{UPres})
\]

\[
\text{IMPORT}_{\text{constraint}} = P_L - P_{DOWNres} - P_{CD_{min}} - P_{HCD}
\]

This conclusion equally applies for the case of lack of downward balancing capacity, which would be endangered if balancing service providers (generating units) sell too little energy in the day-ahead market, because of too high imports.
Intraday capacity calculation methodology of the Core capacity calculation region

Where:

- P_{CD}: Sum of operating generating capacities of centrally dispatched units as declared by generators
- $P_{CD\text{\,min}}$: Sum of technical minima of centrally dispatched generating units in operation
- P_{NCD}: Sum of schedules of generating units that are not centrally dispatched, as provided by generators (for wind farms: forecasted by PSE)
- P_{NA}: Generation not available due to grid constraints (both planned outage and/or anticipated congestions)
- P_L: Demand forecasted by PSE
- $P_{UP\text{\,res}}$: Minimum reserve for upward regulation
- $P_{DOWN\text{\,res}}$: Minimum reserve for downward regulation

For illustrative purposes, the process of practical determination of external constraints in the framework of the intraday capacity calculation is illustrated below in Figures 1 and 2. The figures illustrate how a forecast of the Polish power balance for each hour of the delivery day is developed by PSE in the morning of D-1 in order to determine reserves in generating capacities available for potential exports and imports, respectively, for the intraday market.

External constraint in export direction is applicable if ΔExport is lower than the sum of cross-zonal capacities on all Polish interconnections in export direction. External constraint in import direction is applicable if ΔImport is lower than the sum of cross-zonal capacities on all Polish interconnections in import direction.

14 Note that generating units which are kept out of the market on the basis of strategic reserve contracts with the TSO are not taken into account in this calculation.
Intraday capacity calculation methodology of the Core capacity calculation region

1. Sum of available generating capacities of centrally dispatched units as declared by generators, reduced by:
 1.1 Generation not available due to grid constraints
2. Sum of schedules of generating units that are not centrally dispatched, as provided by generators (for wind farms: forecasted by PSE)
3. Demand forecasted by PSE
4. Minimum necessary reserve for up regulation

Figure 1: Determination of external constraints in export direction (generating capacities available for potential exports) in the framework of the intraday capacity calculation.

1. Sum of technical minima of centrally dispatched generating units in operation
2. Sum of schedules of generating units that are not centrally dispatched, as provided by generators (for wind farms: forecasted by PSE)
3. Demand forecasted by PSE, reduced by:
 3.1 Minimum necessary reserve for down regulation

Figure 2: Determination of external constraints in import direction (reserves in generating capacities available for potential imports) in the framework of intraday capacity calculation.

Frequency of re-assessment

External constraints are determined in a continuous process based on the most recent information, for each capacity allocation time frame, from forward till day-ahead and intra-day. In case of intraday process, these are calculated for each intraday capacity calculation timeframe in accordance with Article 4(2), resulting in independent values for each ID CC MTU, and separately for directions of import to Poland and export from Poland.

Time periods for which external constraints are applied
Intraday capacity calculation methodology of the Core capacity calculation region

As described above, external constraints are determined in a continuous process for each capacity allocation timeframe, so they are applicable for all ID CC MTUs of the respective allocation day.
Annex 2: Requirements for calculation of intraday cross-zonal capacities before full implementation of intraday capacity calculation

<table>
<thead>
<tr>
<th>Intraday cross-zonal capacities</th>
<th>Before the implementation of Core DA CCM</th>
<th>Between the implementation of Core DA CCM and implementation of Core ID CCM at 22:00</th>
<th>Between the implementation of Core ID CCM at 22:00 and 6 months after the implementation of Core ID CCM at 22:00</th>
<th>After 6 months after the implementation of Core ID CCM at 22:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between intraday cross-zonal gate opening time and 22:00</td>
<td>Leftovers from the day-ahead cross-zonal capacities based on existing DA CC initiatives pursuant to Article 26(56) OR Zero intraday cross-zonal capacities pursuant to Article 11(3)</td>
<td>Leftovers from the day-ahead cross-zonal capacities based on Core DA CCM according to the transitional solution pursuant to Article 26(6) and Annexes 3, 4 and 5 OR Zero intraday cross-zonal capacities pursuant to Annex 3(4)</td>
<td>Leftovers from the day-ahead cross-zonal capacities based on Core DA CCM pursuant to Article 4(2)(a) OR Zero intraday cross-zonal capacities pursuant to Article 11(3)</td>
<td>Leftovers from the day-ahead cross-zonal capacities based on Core DA CCM pursuant to Article 4(2)(a)</td>
</tr>
<tr>
<td>From 22:00 onwards</td>
<td>Leftovers from the day-ahead cross-zonal capacities based on existing DA CC initiatives pursuant to Article 26(56) OR Intraday cross-zonal capacities from transitional ID CC initiatives pursuant to Article 26(52)</td>
<td>Leftovers from day-ahead cross-zonal capacities based on Core DA CCM according to the transitional solution pursuant to Article 26(6) and Annexes 3, 4 and 5</td>
<td>Intraday cross-zonal capacities from Core ID CCM at 22:00 pursuant to Article 4(2)(b)</td>
<td>Intraday cross-zonal capacities from Core ID CCM at 22:00 pursuant to Article 4(2)(b)</td>
</tr>
</tbody>
</table>
Annex 3: Update of intraday cross-zonal capacities remaining after the SDAC in the transition period

(1) The CCC shall use the final cross-zonal capacities resulting from day-ahead capacity calculation and the net positions resulting from already allocated capacities in the SDAC to calculate the updated day-ahead cross-zonal capacities to be used as intraday cross-zonal capacities at the intraday cross-zonal gate opening time.

(a) In the case that the LTA inclusion in day-ahead is ensured through the LTA margin approach, the intraday cross-zonal capacities are described as flow-based parameters;

(b) In case the LTA inclusion in day-ahead is ensured through the Extended LTA inclusion approach, the intraday cross-zonal capacities are described as a union of flow-based parameters and “LTA values” (LTA domain).

For the updated intraday flow-based parameters, the PTDF values shall be the final PTDFs resulting from the day-ahead capacity calculation, and the RAM shall be derived as:

$$\overline{RAM}_{UID} = \max (0, \overline{RAM}_f - \overline{PTDF}_f N_{PAC})$$

Equation 3b

with

- \overline{RAM}_{UID} updated remaining available margin for intraday cross-zonal capacities
- \overline{RAM}_f final remaining available margin resulting from the day-ahead capacity calculation
- \overline{PTDF}_f final power transfer distribution factor matrix resulting from the day-ahead capacity calculation
- N_{PAC} net positions resulting from already allocated capacities in SDAC

The updated LTA values, applicable if the Extended LTA inclusion approach is applied in day-ahead, shall be derived as:

$$\overline{LTA}_{UID} = \max (0, \overline{LTA}_f - \overline{SEC}_{DA})$$

Equation 3c

with

- \overline{LTA}_{UID} updated remaining available long-term capacities for provision to SIDC; value per oriented border
- \overline{LTA}_f LTA domain resulting from the day-ahead capacity calculation thus adjusted for long-term nominations; value per oriented border
- \overline{SEC}_{DA} schedule exchange resulting from already allocated capacities in SDAC

(2) In case the LTA inclusion in day-ahead is ensured through:

(a) the LTA margin approach: for each CNEC, each TSO may reduce \overline{RAM}_f by decreasing $\overline{LTA}_{margin,DA}$ as calculated pursuant to the day-ahead capacity calculation methodology while ensuring compliance with Article 16 of Regulation (EU) 2019/943 in order to avoid undue discrimination between internal and cross-zonal exchanges as referred to in Article 21(1)(b)(ii) of the CACM Regulation;

(b) the Extended LTA inclusion approach: each TSO may decrease the \overline{LTA}_f on its borders while ensuring compliance with Article 16 of Regulation (EU) 2019/943.
Intraday capacity calculation methodology of the Core capacity calculation region

Irrespective of the options provided to each TSO pursuant to (a) and (b), each TSO shall ensure that on each bidding zone border, the long-term capacities that are in effect taken into account pursuant to (a) and (b) are between 0.001 MW and 1500 MW.

(3) For each CNEC, each TSO may adjust the ΔAM_P, by modifying the AM_{DA} as calculated pursuant to the day-ahead capacity calculation methodology while ensuring compliance with Article 16 of Regulation (EU) 2019/943 in order to avoid undue discrimination between internal and cross-zonal exchanges as referred to in Article 21(1)(b)(ii) of the CACM Regulation.

(4) During the transitional period pursuant to Article 26(6) the Core TSOs may set to zero the cross-zonal capacities calculated in period before 22h at D-1. These intraday cross-zonal capacities may be set to zero on the condition that offering non-zero cross-zonal capacities pursuant to Article 4(2)(a) could endanger operational security. Such a decision may be made per bidding zone border by the competent TSOs.
Annex 4: Calculation of ATCs for SIDC fallback procedure in the transition period

7. In case the SIDC is unable to accommodate flow-based parameters or in case the leftovers from the day-ahead cross-zonal capacities based on Core DA CCM are used according to a transitional solution as defined in Annex 2 to this methodology, the CCC shall convert the cross-zonal capacities into available transmission capacities for each Core oriented bidding zone border and each DA CC MTU. The Core TSOs may delegate this responsibility to a third party.

8. The cross-zonal capacities shall serve as the basis for the determination of the ATCs for SIDC fallback procedure. As the selection of a set of ATCs from the cross-zonal capacities leads to an infinite set of choices, an applicable algorithm determines the ATCs for SIDC fallback procedure.

9. The following inputs are required to calculate ATCs for SIDC fallback procedure for each ID CC MTU:

(a) the final flow-based parameters ($P_{TD}F_j$ and \overline{RA}_{UID}) and \overline{TA}_{UID} as calculated pursuant to Annex 3 and, if applicable, \overline{TA}_{UID} calculated pursuant to Annex 3;

(b) If defined, the global allocation constraints shall be assumed to constrain the Core net positions pursuant to Article 7(5), and shall be described following the methodology described in Article 18(2). Such constraints shall be adjusted for offered cross-zonal capacities on the non-Core bidding zone borders.

10. In case the cross-zonal capacities are described solely by flow-based parameters, the calculation of the ATCs for SIDC fallback procedure is an iterative procedure, which gradually calculates ATCs for each DA CC MTU, while respecting the constraints of the final flow-based parameters pursuant to paragraph 3:

(a) The initial ATCs are set equal to zero for each Core oriented bidding zone border, i.e.:

$$\overline{ATC}_{k=0} = 0$$

with

$$\overline{ATC}_{k=0}$$

the initial ATCs before the first iteration

(b) the remaining available margin of the final flow-based parameters (\overline{RA}_{f}) have to be adjusted for the flows resulting from net positions or already allocated capacities resulting from the SIDC in accordance with Article 4(5)(b):

$$\overline{RAM}_{ATC}(0) = \max(0, \overline{RA}_{f} - \overline{PTD}_{f} \overline{NP}_{SIDC})$$

Equation 14

with

$$\overline{RAM}_{ATC}(0)$$

remaining available margin for ATC calculation at iteration $k=0$

$$\overline{RA}_{f}$$

remaining available margin of the flow-based parameters pursuant to paragraph 3 or equal to \overline{RA}_{UID} from Annex 3, if applicable.

53
PTDF$_f$ PTDF matrix of the final flow-based parameters

$\bar{N}P_{SIDC}$ Core net positions resulting from SIDC which are not already included in the CGM

(c) The iterative method applied to calculate the ATCs for SIDC fallback procedure consists of the following actions for each iteration step k:

i. for each CNEC and external constraint of the flow-based parameters pursuant to paragraph 3, calculate the remaining available margin based on ATCs at iteration $k-1$

$$\overline{RAM}_{ATC}(k) = \overline{RAM}_{ATC}(0) - p_{PTDF_{zone-to-zone}} \bar{ATC}_{k-1}$$

with

- $\overline{RAM}_{ATC}(k)$ remaining available margin for ATC calculation at iteration k
- \bar{ATC}_{k-1} ATCs at iteration $k-1$
- $p_{PTDF_{zone-to-zone}}$ positive zone-to-zone power transfer distribution factor matrix

ii. for each CNEC, share $\overline{RAM}_{ATC}(k)$ with equal shares among the Core oriented bidding zone borders with strictly positive zone-to-zone power transfer distribution factors on this CNEC;

iii. from those shares of $\overline{RAM}_{ATC}(k)$, the maximum additional bilateral oriented exchanges are calculated by dividing the share of each Core oriented bidding zone border by the respective positive zone-to-zone PTDF. The maximum additional bilateral oriented exchanges may be negative, i.e. it may lead to decrease the exchange capacity;

iv. for each Core oriented bidding zone border, \bar{ATC}_{k} is calculated by adding to \bar{ATC}_{k-1} the minimum of all maximum additional bilateral oriented exchanges for this border obtained over all CNECs and external constraints as calculated in the previous step;

v. go back to step i;

vi. iterate until the difference between the sum of ATCs of iterations k and $k-1$ is smaller than 1kW;

vii. the resulting ATCs for SIDC fallback procedure stem from the ATC values determined in iteration k, after rounding down to integer values;

viii. at the end of the calculation, there are some CNECs and external constraints with no remaining available margin left. These are the limiting constraints for the calculation of ATCs for SIDC fallback procedure.
Intraday capacity calculation methodology of the Core capacity calculation region

(d) positive zone-to-zone PTDF matrix \(p_{PTDF_{zone-to-zone}} \) for each Core oriented bidding zone border shall be calculated from the PTDF as follows (for HVDC interconnectors integrated pursuant to Article 13, Equation 8 shall be used):

\[
p_{PTDF_{zone-to-zone,A->B}} = \max \left(0, PTDF_{zone-to-slack,A} - PTDF_{zone-to-slack,B} \right)
\]

Equation 15

with

\(p_{PTDF_{zone-to-zone,A->B}} \) positive zone-to-zone PTDFs for Core oriented bidding zone border A to B

\(PTDF_{zone-to-slack,m} \) zone-to-slack PTDF for Core bidding zone border m

11. In case the cross-zonal capacities are described as the union of flow-based parameters and a LTA domain, the calculation of the ATCs for SIDC fallback procedure is a mathematical optimisation process.

The following objective function is applied:

\[
\text{Maximize } \left[\left(\sum \overrightarrow{ATC}_{phys} / N_{oriented \, borders} \right) \cdot W_{sum} + \left(\text{Min } \overrightarrow{ATC}_{phys} \right) \cdot (1 - W_{sum}) \right]
\]

with

\(\overrightarrow{ATC}_{phys} \) Sum of the ATCs resulting from flow based parameters and possible long-term capacities, e.g. :

\(\overrightarrow{ATC}_{phys} = \overrightarrow{ATC}_{FB} + \overrightarrow{ATC}_{LTA} \)

\(N_{oriented \, borders} \) The number of oriented borders in Core CCR

\(W_{sum} \) A common weighting factor applied on all Core borders to adopt between maximizing the sum of ATCs averaged across all borders and maximizing the lowest ATC across all borders; this value is a scalar between 0 and 1, initially set to 0.5.

(a) This objective function is subject to the following constraints:

\[
\overrightarrow{ATC}_{phys} = \overrightarrow{ATC}_{FB} + \overrightarrow{ATC}_{LTA}
\]

\[
\overrightarrow{ATC}_{LTA} \leq (\alpha - 1) \cdot \overrightarrow{ATC}_{UID}
\]

\[
\overrightarrow{ATC}_{FB} \leq \alpha \cdot \frac{RAB_{UID}}{p_{PTDF_{zone-to-zone}}}
\]
Intraday capacity calculation methodology of the Core capacity calculation region

\[
\begin{align*}
\overline{ATC}_{FB} & \geq 0 \\
\overline{ATC}_{LTA} & \geq 0
\end{align*}
\]

with

\(\alpha \) A single optimization variable, between 0 and 1 used for all ATC borders.

\(\overline{LTA}_{UID} \) Updated remaining available long-term capacities for ATC extraction pursuant to Annex 3

\(\overline{RAM}_{UID} \) Updated remaining available margin for ATC calculation provided by the FB Domain pursuant to Annex 3

\(pPTDF_{zone-to-zone} \) positive zone-to-zone power transfer distribution factor matrix
Annex 5: Other transitional arrangements

1. Each Core TSO shall have the right to perform individual validation of ID ATCs calculated and provided to Core TSOs pursuant to Annex 4. Pursuant to this validation, each Core TSO shall have the right to adjust ID ATCs on its bidding zone borders in case such adjustments are needed to maximise cross-zonal capacity and/or to maintain operational security. The maximum of ID ATC increase per bidding zone border shall be 300 MW.

2. The ID ATC on a bidding zone border shall always be the lowest value of all ID ATCs set by all impacted TSOs for this bidding zone border.

3. As soon as possible after the implementation of DA CCM and no later than from four months after the adoption of this Decision, each Core TSO requiring amendment of ID ATCs shall provide to all Core TSOs the justification for each ATC adjustment. This justification shall be based on the assessment of the day-ahead or intraday congestion forecast common grid models and shall include the concerned CNECs on which the need for decrease or increase of flow or capacity was identified to maximise cross-zonal capacity and/or maintain operational security.

4. After the implementation of DA CCM, the Core TSOs shall regularly publish the following information about the update of intraday cross-zonal capacities remaining after the SDAC in the transition period:

 (a) the percentage of LTA and AMR applied on the intraday level pursuant to Annex 3;
 (b) applied Wsum value pursuant to Annex 4; and
 (c) the flow-based domain and, if relevant, LTA domain used for ATC extraction pursuant to Annex 3, in particular the values: $\bar{\bar{R}}\bar{\bar{A}}\bar{\bar{M}}_f$ (before and after possible adjustment), $\bar{\bar{N}}\bar{\bar{P}}_{AMC}$, $\bar{\bar{P}}\bar{\bar{D}}\bar{\bar{F}}_f$, $\bar{\bar{R}}\bar{\bar{A}}\bar{\bar{M}}_{UID}$, $\bar{\bar{L}}\bar{\bar{T}}\bar{\bar{A}}_f$ (before and after possible adjustment), $\bar{\bar{S}}\bar{\bar{E}}\bar{\bar{C}}_{DA}$ and $\bar{\bar{L}}\bar{\bar{T}}\bar{\bar{A}}_{UID}$; and
 (d) ID ATC adjustments pursuant to paragraph 1 including justifications as of deadline pursuant to paragraph 3;

In case the information pursuant to point (c) cannot be published at the time of implementation of DA CCM, it shall be published as soon as feasible and for all days since the implementation of DA CCM.

5. As from four months after the start of the transition period pursuant to Article 26(6), the Core CCC shall assist the Core TSOs in the ATC validation, by providing at least the following information for each Core CNEC and for each MTU, based on the CGMs from the Dacf procedure:

 (a) reference flows;
 (b) zone-to-zone PTDFs of Core oriented borders; and
 (c) potential maximal flows due to ID ATCs, superposed to the reference flows.

The CCC shall provide this information not later than 20:45 of D-1.

6. During the transition period pursuant to Article 26(6), the Core TSOs may apply and implement, without the need to amend the intraday capacity calculation methodology, further adjustments of the ATC extraction methodology pursuant to Annex 4 if it better meets the objectives of the CACM Regulation and is agreed among Core TSOs.
Intraday capacity calculation methodology of the Core capacity calculation region