Assessment of the annual cross-border infrastructure compensation sum

Study commissioned by ACER Consultation Workshop | Ljubljana, 25 October 2012

Christoph Maurer | Christian Zimmer

consentec

Overview

Background and approach

Review of policy context and requirements

Methodology options

Numerical assessment

Preliminary conclusions

Background and scope of the study

ITC = Inter-TSO Compensation

Legal framework for ITC mechanism: Annex A of Regulation 838/2010

- > 2 components: Losses and costs of making infrastructure available to host cross-border flows
- > Latter based on annual cross-border infrastructure compensation sum which shall be apportioned among TSOs (called "ITC infrastructure fund" hereafter)
- > Article 5.4 sets fund size to 100 m€/a for time being
- > Article 5.3 requests ACER to carry out review and make proposal to European Commission on future ITC infrastructure fund

Scope of the study: Assist ACER with the above review

» Develop and evaluate methodical options for determining ITC infrastr. fund
 » Provide opinion on suitability of LRAIC

Out of scope

- > Methods for determining contributions to and compensations from ITC infr. fund
- > Losses
- > General discussion of ITC beyond current legal framework

Approach

Qualitative and quantitative analysis

- > Review of policy context
- > Input from TSOs and NRAs

We would like to thank all who have provided input to the study

- » Opinions regarding the appropriate size of the ITC infrastructure fund
- > Meetings with European Commission and ENTSO-E
- > Development of methodical options

» Data for quantitative analysis

- » Policy context provides guidance and restrictions
- » But no single options clearly preferrable by principle
- > Assessment of options

Current status and next steps

- > This presentation summarises the draft final report
 - » <u>http://www.acer.europa.eu/Official_documents/Public_consultations/PC_2012</u> <u>E_15/Consentec_ACER_ITC-Fund_FinalReport_Draft.pdf</u>
- > Final report on the basis of input from public consultation: By end of 2012
- > ACER to decide on further steps

Overview

Background and approach

Review of policy context and requirements

Methodology options

Numerical assessment

Preliminary conclusions

Review of policy context and requirements

Dimensions and criteria

Principal dimensions to consider

> Scope

- » the question which share of the TSOs' infrastructure is to be considered relevant for the infrastructure fund under ITC
- > Costing methodology
 - » the question how the relevant share of the TSOs' infrastructure is valued when determining the size of the ITC infrastructure fund

Criteria

- > Compliance with legal provisions defining the ITC mechanism
- > Coherence with other instruments relating to financing of infrastructure for cross-border power flows
 - » Congestion management
 - » Proposed Energy Infrastructure Package

Review of policy context and requirements

Compliance with legal provisions

Relevant articles of Regulations 714/2009 and 838/2010

- > Article 13 of Regulation 714 lays down high level requirements for ITC
- > Reg. 838 implements current ITC mechanism (specifics in Annex A)
 - » Methods for contributions and compensations firmly defined in 6.1 and 6.2
 - » Infrastructure fund size is 100 m€/a for time being (Art. 5.4)
 - » Cornerstones of assessment which this study provides input to (Art. 5.1/5.3):
 - > Costing principles adopted from Art 13.6 of Regulation 714/2009
 - > Adjustment where infrastr. is financed by sources other than network access charges
 - > Specification of geographical scope

Overarching aspects

- > Regulation 838 is the more specialised provision, specifying the current ITC mechanism within the requirements set by Regulation 714
 - » Currently valid annual fund size of 100 m€ *de facto* constitutes an interpretation of the goals and principles of Regulation 714
- > Fund size is only degree of freedom, while relative payments are fixed
 - » Clear restriction if appropriateness of ITC is assessed by net financial positions → Justification of (if not demand for) methodical simplicity

Review of policy context and requirements

Coherence with other instruments: Congestion Management (1/2)

Coherence of ITC and congestion revenues discussed for long time

> Reason: Origins of congestion revenues and ITC payments are similar

Here: Confinement to restrictions imposed by current legal framework

- > Analysis of the way in which the legislator has interpreted the requirements as to the coherence of ITC and congestion management
 - » Different interpretation would require amending Reg. 838 \rightarrow out of scope
- > Regulation 838 requires the infrastructure fund to be appropriately adjusted to reflect infrastructure financed from other sources than network access charges
 - » Congestion revenues (cf. Art. 16.6 of Regulation 714/2009)
 - » Private investment with exemption according to Art. 17 of Reg. 714/2009
- > Legislator has established a connection between congestion revenues and the scope of the ITC infrastructure fund
 - » Some infrastructure to be deducted from total infrastructure before determining which share of the remainder falls under ITC
- > Allows for different interpretations with regard to the options for using congestion revenues \rightarrow next slide

Review of policy context and requirements

Coherence with other instruments: Congestion Management (2/2)

Narrow interpretation: Art. 16.6 1st para point b

> Investments explicitly financed by congestion revenues

> Inclusion in scope of ITC infrastr. fund would constitute double compensation

Wide interpretation: Art. 16.6 1st para point b + 2nd para

- > Congestion revenues used for lowering tariffs: Also financing infrastructure?
- > Consequent application would require ITC to be based on national tariff bases
 → incompatible with LRAIC; dependence on various national specifics
- > Tariffs finance more than infrastrcture \rightarrow how to determine share (per country)?
- > Implicit definition of congestion income sharing key by Reg. 838 (through fixed method for compensations and contributions) → appropriate?

Direct set off of congestion revenues against ITC infrastructure fund

- > Not an option provided for by Regulation 838/2010
- > Would be inconsistent with current fund size being static

> We consider narrow interpr. applicable, but also quantify wide interpr.

Review of policy context and requirements

Coherence with other instruments: Energy Infrastructure Package

Background on proposed Energy Infrastructure Package (EIP)

- > aims at promoting the timely development of trans-European energy networks in order to achieve relevant EU policy objectives
- > defines so-called Projects of Common Interest (PCI) that shall mainly be financed via the network access charges of those countries that benefit from the respective investment
 - » Distinct mechanism for financing PCI \rightarrow exclusion of PCI from ITC?
 - » Regulation 838/2010 only allows for excluding infrastructure <u>not</u> financed by network access charges

Implications for this study

- > Valid reasons for considering amendment to Reg. 838/2010 when EIP comes into force
- > However, future role and design of ITC in parallel to EIP is out of scope of study
- > Purpose of this study is assessment on basis of currently valid legal framework

> EIP not considered in the study

Review of policy context and requirements

Scope and costing methodology

Scope of ITC infrastructure fund

- > Geographical scope: 34 countries for the time being (based on Art. 5.3 of Annex A of Regulation 838/2010)
- > New and existing infrastructure (Art. 13.6 of Reg. 714/2009)
- > "costs incurred as a result of hosting cross-border flows" (Art. 13.6 of Reg. 714)
 - → filter (i.e. only the respective share of new and existing infrastructure to be included in ITC infrastructure fund)

Costing methodology

- > Legal provisions clearly demand forward-looking long-run average incremental cost (LRAIC) as the basis of assessment of ITC infrastructure fund
 - » Prescribed in Reg. 714, picked up in Reg. 838
- > In addition, Reg. 838 asks ACER for an opinion on suitability of LRAIC

In this study,

- > methods and numerical results are based on LRAIC
- > separate considerations are provided on the suitability of LRAIC

Overview

Background and approach

Review of policy context and requirements

Methodology options

Numerical assessment

Preliminary conclusions

Methodology options

Principles

Structure of analysis

- > Decoupling of
 - » scope definition how the cost of some given infrastructure shall be determined for ITC purposes
 - » and costing methodology determination of some "key" that defines which share of total infrastructure shall be considered in the ITC infrastructure fund
- > Established approach: Determine scope in terms of asset amounts for a set of asset classes and weight these with unit cost according to costing methodology

High-level principles implied by legal framework

Methodology options

LRAIC

Taking account of previous studies

Interpretation of LRAIC

> Long run:	no exclusion of short-run invariable cost, such as investment cost
> Average:	 annuities pro-rata share of cost between cross-border and other functions
> Incremental:> Forward-looking:	current, efficient technology (but actual structure and topology) replacement cost

Joint and common cost: "Thin" definition recommendable

National access charges to reflect ITC anyway

> Consistency and objectivity here more relevant than precise cost recovery

> Direct cost of investment (annuity) plus incremental annual operating cost

Options: Country-specific vs. standardised figures

- > Relevance in given context lower than in the past (affects only global fund size)
- > Standardisation could be done such that total cost are unchanged
- > Standardisation of depreciation period towards asset life times c'ld be beneficial

Methodology options

Incremental approach

Methodology options

Global Transit Share GTS (element of incremental and absolute approaches)

Purpose and principle

- > Determine the share of new investment related to hosting cross-border flows
- > Key should be global and simple to determine
- > Desirable: Similarity to methods for determining contributions and compensations
 - » Formulae for determining the compensations reflect cross-border flows by means of "transit" (defined in Art.1.6 of Annex A of Regulation 838)
 - » Distinction between cross-border and "other" purposes: other = domestic load (defined in Art. 1.8 of Annex A of Regulation 838)

Proposed implementation

- > Ratio of
 - » Total transit of all participants and
 - » Total transit plus load of all participants
- > Remarks/properties:
 - » Based on data required anyway for implementing ITC
 - » Definition contributes to requirement to account for benefits (transits based on netted flows)

Methodology options

Absolute and restricted absolute approaches

Principle of absolute approach

- > No disctinction between existing and new infrastructure
- > Both the relevant share of new infrastructure and the "appropriate proportion" of existing infrastructure should be consistently determined by applying the GTS

Proposed implementation (including simplifications for practicability)

- > Start with entirety of transmission assets
- > Deduct (shares of) assets financed by other sources than network charges
- > Multiply with GTS

Variant: Restricted absolute approach
 Expectation: Absolute approach yields fund size >>100 m€/a
 Restricted absolute approach may help avoiding abrupt large changes
 » Consider only share of infrastructure commissioned after "reference year"
 » Pragmatic implementation: Proportional shares based on standard depreciation period, assuming homogeneous age structure

Overview

Background and approach

Review of policy context and requirements

Methodology options

Numerical assessment

Preliminary conclusions

Numerical assessment

Data base (1/2)

Introductory remark: Assessment limited by data availability

> Allows for comparison of options, but not to determine "definite" figures

Considered years

- > 2011 is base year (latest completed year)
- > Original request: Assessment for 2011, 2012, 2013
 - » 2012 and 2013 not feasible for data availability reasons
- > Instead, the following temporal effects are considered:
 - » Short-term volatility of flow patterns comparison of flow data 2010 vs. 2011
 - » Impact of prospective network expansion forecasted asset amounts of 2022

Asset volumes

- > 6 asset classes (AC lines, DC lines, transformers), 4 actually used here
- > Data source: ENTSO-E
 - » Data gaps replaced by data from older years, back to 2007
- > Estimation of development until 2022 based on TYNDP (projects of pan-European significance)

Numerical assessment

Data base (2/2)

23 usable responses, gaps replaced by volume weighted averages

Numerical assessment

Preparatory calculations

Global Transit Share (GTS)

> Based on historic data from actual ITC implementation provided by ENTSO-E

Year	GTS
2010	6.65 %
2011	7.53 %

Infrastructure financed by sources other than network charges

- > Based on congestion revenue data (divided by usage destinations) provided by ENTSO-E
- > Results for 2011 and country-specific LRAIC:
 - » "Narrow" interpretation: 1.2% of total LRAIC based network cost
 - » "Wide" interpretation: 5% of total LRAIC based network cost
- > Shares assumed to also apply to 2022

Numerical assessment

ITC infrastructure fund size: Base case

Numerical assessment

ITC infrastructure fund size: Sensitivity analysis

> Effect of GTS variation is much smaller than base case differences
> Effect on inc smaller than on abs and abs_r

Numerical assessment

ITC infrastructure fund size: Sensitivity analysis

> Small impact with given data, because congestion revenues are small compared to LRAIC based total annual network cost

Numerical assessment

ITC infrastructure fund size: Sensitivity analysis

- > Fund size varies by +25% / 15% when altering RoR by 2%
- > Damped effect on incremental approach

Numerical assessment

ITC infrastructure fund size: Sensitivity analysis

Strong impact (intended flexibility – difficult to reach agreement?)
 Belative impact decreases ever time

> Relative impact decreases over time

Overview

Background and approach

Review of policy context and requirements

Methodology options

Numerical assessment

Preliminary conclusions

Preliminary conclusions

Appraisal of methodology options for determining ITC infrastructure fund size

General observations		
 Fund sizes differ considerably between the methods, but Relative order not changed by considered parameter variation 	Exception: Reference year for restricted absolute approach	
> Reservations concerning LRAIC bandwidth		
Method-specific findings		
	Subject to reservations	
> Absolute approach yields highest fund sizes	concerning LRAIC	
» Outside usually discussed bandwidth		
» Abrupt change consistent with current fund size being i	n line with Reg. 714?	
> Restricted absolute approach and incremental approach y	ield lower results	
» Advantage of incremental approach:		
Ensures consistency with current fund size		
» Advantage of restricted absolute approach:		
Avoids explicit tie to fixed setting of current fund size		

Preliminary conclusions

Suitability of LRAIC

General considerations

- > Alternative would require altering Reg. 714 \rightarrow only if clearly better than LRAIC
- > Motivation for LRAIC: High consistency across countries
- > However, appears difficult to achieve in practice
 - » Could be due to lack of practical relevance of LRAIC for national tariffing
- > Improvement appears possible
 - » External validation/auditing easier than for regulated cost (standardisation)
 - » Difficulties faced in this study do not speak against LRAIC as such

Most suitable costing method could depend on approach for fund size

- > Forward looking perspective of LRAIC consistent with incremental approach
- > Regulated (historic) cost more appropriate for absolute approach
 - » Considers entire asset base
 - » In line with ITC purpose to compensate for costs actually incurred
- > Restricted absolute approach: Practicability of obtaining reasonably sound cost figures could be the decisive criterion to decide between costing methods

Consentec GmbH Grüner Weg 1 52070 Aachen Germany Tel. +49. 241. 93836-0 Fax +49. 241. 93836-15 info@consentec.de

www.consentec.de

Annex

Mathematical specification of methodology options

Incremental approach

	$F_{inc,t} = 100$	$Mio\left(1-rac{t-2011}{D} ight)rac{UC_{global,t}}{UC_{global,2011}}$
	$+GTS_t \cdot \Sigma$	$k_{i=1}^k (Q_i (1 - q_{other,i}) \cdot UC_{i,t})$
with	t	year under assessment
	D	standard depreciation period
	k	number of new investment projects (2011 or later)
	Q_i	quantity (in km or MVA) of new investment <i>i</i>
	$q_{other,i}$	relative share of investment <i>i</i> financed by sources
		other than national network access charges
	GTS_t	Global Transit Share of year t
	$UC_{global,t}$	global unit cost in year t
	$UC_{i,t}$	unit cost of asset class of investment <i>i</i> in year <i>t</i>

Mathematical specification of methodology options

Global Transit Share

$$GTS = \frac{\sum_{i=1}^{N} T_i}{\sum_{i=1}^{N} (T_i + L_i)}$$

- with *N* number of ITC participants
 - T_i transit of participant *i*

$$L_i$$
 load of participant *i*

Mathematical specification of methodology options

Absolute approach and	restricted	absolute	approach
-----------------------	------------	----------	----------

	$F_{abs,t} =$	$GTS_t \cdot \sum_{i=1}^k (A_i \cdot UC_{i,t})$
with	t	year under assessment
	GTS_t	Global Transit Share of year t
	A_i	Quantity (in km or MVA) of asset class <i>i</i> , after
		"appropriate adjustment" for financing by other
		sources than network access charges
	k	number of asset classes
	$UC_{i,t}$	unit cost of asset class <i>i</i> in year <i>t</i>
	F _{abs,res}	tricted ,t = $F_{abs,t} \cdot \frac{t - t_{ref}}{D}$
with	D	standard depreciation period
	t	year under assessment
	t _{ref}	reference year