







## Network Code Requirements for Generators: DSO View

Jacques Merley
EURELECTRIC Network of Experts TSO-DSO Interface

ACER Workshop, 3 September 2012, Brussels









### DSO Technical Expert Group for the RfG

- Formally set-up on the basis of ENTSO-E invitation letter
  - 20th European Electricity Regulatory Forum expressed importance of involvement of DSOs in development of network codes
  - ENTSO-E invited DSO associations to appoint technical experts
  - Experts bring in their experience on request of the ENTSO-E DT
  - Minutes of working sessions are published on ENTSO-E website

#### Experiences

- Tremendous progress since the first drafts
- In the final proposal, DSO TEG's views considered in a limited way









## Issues Addressed in the DSO Letter Sent to ENTSO-E on 5 June 2012 Remain Valid

- Allocation of responsibilities among stakeholders
- Missing cost-benefit analysis
- Determination of Connection Point ('Responsibility gap issue')
- Compliance & standardization









### Allocation of Responsibilies Among Stakeholders

- Alternative technical solutions listed by ENTSO-E in the 'Justification outlines' document are presented in simplistic way & not fully considered in the development of the network code.
- Example: Escalation of a local incident to a large scale cross-border one is not only dependent on generating unit's capabilities to support voltage management or fault right through but also on transmission network performance
  - → Adequate transmission network development & robust defence strategy are needed









## Results of Survey among European DSOs Demonstrate that Number of NC Requirements Significantly Deviate from Current Practices

|                                                              | Austria | Belgium | England<br>& Wales | France | Germany | Ireland | Italy | Northem<br>Ireland | Scotland |
|--------------------------------------------------------------|---------|---------|--------------------|--------|---------|---------|-------|--------------------|----------|
| Frequency ranges                                             |         |         |                    |        |         |         |       |                    |          |
| Rate of change of frequency withstand capability             |         |         |                    |        |         |         |       |                    |          |
| Active Power Controllability and Control Range               |         |         |                    |        |         |         |       |                    |          |
| Limited Frequency Sensitive Mode (over-frequency)            |         |         |                    |        |         |         |       |                    |          |
| Limited Frequency Sensitive Mode (under-frequency)           |         |         |                    |        |         |         |       |                    |          |
| Frequency sensitive mode                                     |         |         |                    |        |         |         |       |                    |          |
| Simulation models                                            |         |         |                    |        |         |         |       |                    |          |
| Black Start Capability                                       |         |         |                    |        |         |         |       |                    |          |
| Voltage Ranges                                               |         |         |                    |        |         |         |       |                    |          |
| Maximum Power Reduction at under-frequency                   |         |         |                    |        |         |         |       |                    |          |
| Reactive Power Capability at Maximum Active Power (synch)    |         |         |                    |        |         |         |       |                    |          |
| Reactive Power Capability below Maximum Active Power (synch) |         |         |                    |        |         |         |       |                    |          |
| Reactive Power Capability at Maximum Active Power (PPM)      |         |         |                    |        |         |         |       |                    |          |
| Reactive Power Capability below Maximum Active Power (PPM)   |         |         |                    |        |         |         |       |                    |          |
| Fault-Ride-Trough capability (synch – type B and C)          |         |         |                    |        |         |         |       |                    |          |
| Fault-Ride-Trough capability (PPM – type B and C)            |         |         |                    |        |         |         |       |                    |          |

| Requirement not existing in current code, impact unknown |  |  |  |
|----------------------------------------------------------|--|--|--|
| Existing requirement                                     |  |  |  |
| Minor deviation                                          |  |  |  |
| Majordeviation                                           |  |  |  |









# Cost-Benefit Analysis for requirements deviating from present practices (ACER FG 2.1) is necessary

 The "current practices" described by ENTSO-E accompanying documents do not always correspond to the information provided by the DSO experts

#### Key issues:

 Frequency sensitivity requirements and the related LFSM-O and LFSM-U









## LFSM-O & -U & Risk of Undesired Islanding

Rule for prevention of electrical risk for personnel in case of incident = DISCONNECT!

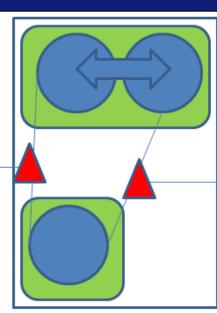
Decisive factor for security of supply = REMAIN CONNECTED!



- The NC proposes moderation of protection systems by weakening frequency and voltage based protection settings
- Possible negative consequences:
  - An unacceptable increase of electrical risk in distribution networks in some countries
  - Damages to generators and consumer appliances (under islanding operation)
- The network code should not preclude technical solutions that would ensure the quality and safety of networks operation (currently in a demonstration phase)
  - > DSOs offer their contribution to the CBA on this requirement










# Determination of Connection Point ('Responsibility Gap issue')

Power Generating Facility Owner to be responsible for compliance of the Power Generating Module (Art. 34)

- → PGF behaviour at the connection point is key
- > The network code should be clear on how the connection point is determined to ensure unambiguous definition of requirements
- DSO not to be responsible for any difficulties arising between the generating PGM & the connection point



1 Facility3 Units2 Connectionpoints









Compliance & standardization issue: Type Testing necessary for compliance monitoring of Type A generators (mass market)

'The <u>Relevant Network Operator</u> shall regularly assess the compliance of a Generating Unit with the requirements under this Network Code...' (Art. 35(1))

**⇒** Not viable for DSOs; CBA would be clearly negative **⇒** 3 compliance options:



CE Marking – Impossible without standards

- Only safety & hazards for LV equipment covered, system performances not yet!





Self-certification

No guarantee from PGF operator in case of failure





Test laboratories & certification bodies accredited by national affiliate of European cooperation for Accreditation (EA)

To be published at EU level











### Compliance & standardization (ctnd)

## **ENTSO-E** proposal of third party certification only partly addresses the issue

- Clearly defined test procedure is missing
- Risk of unenforceability of requirements without proper standards describing test procedure in place
- Risk of complications in implementation including legal disputes & widespread use of derogations
- ➤ Possibility of using a so-called 'New approach' (EU regulation defining requirements to be filed out by standards defined by CENELEC) should be investigated (see example of Machinery Directive 2006/42/EC)









#### Recommendations

- A full-fledged independent Cost-Benefit Analysis for deviating requirements is necessary
- The open issues including unresolved legal issues should be addressed in an open discussion with relevant stakeholders...extra time is needed for this









#### **Thank You For Your Attention!**

#### **Contact:**

Jacques Merley: jacques.merley@erdfdistribution.fr

Pavla Mandatova: pmandatova@eurelectric.org